1
|
Cross K, Vetter SW, Alam Y, Hasan MZ, Nath AD, Leclerc E. Role of the Receptor for Advanced Glycation End Products (RAGE) and Its Ligands in Inflammatory Responses. Biomolecules 2024; 14:1550. [PMID: 39766257 PMCID: PMC11673996 DOI: 10.3390/biom14121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
Since its discovery in 1992, the receptor for advanced glycation end products (RAGE) has emerged as a key receptor in many pathological conditions, especially in inflammatory conditions. RAGE is expressed by most, if not all, immune cells and can be activated by many ligands. One characteristic of RAGE is that its ligands are structurally very diverse and belong to different classes of molecules, making RAGE a promiscuous receptor. Many of RAGE ligands are damaged associated molecular patterns (DAMPs) that are released by cells under inflammatory conditions. Although RAGE has been at the center of a lot of research in the past three decades, a clear understanding of the mechanisms of RAGE activation by its ligands is still missing. In this review, we summarize the current knowledge of the role of RAGE and its ligands in inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA; (K.C.); (S.W.V.); (Y.A.); (M.Z.H.); (A.D.N.)
| |
Collapse
|
2
|
Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. Breath of fresh air: Investigating the link between AGEs, sRAGE, and lung diseases. VITAMINS AND HORMONES 2024; 125:311-365. [PMID: 38997169 DOI: 10.1016/bs.vh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are compounds formed via non-enzymatic reactions between reducing sugars and amino acids or proteins. AGEs can accumulate in various tissues and organs and have been implicated in the development and progression of various diseases, including lung diseases. The receptor of advanced glycation end products (RAGE) is a receptor that can bind to advanced AGEs and induce several cellular processes such as inflammation and oxidative stress. Several studies have shown that both AGEs and RAGE play a role in the pathogenesis of lung diseases, such as chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, cystic fibrosis, and acute lung injury. Moreover, the soluble form of the receptor for advanced glycation end products (sRAGE) has demonstrated its ability to function as a decoy receptor, possessing beneficial characteristics such as anti-inflammatory, antioxidant, and anti-fibrotic properties. These qualities make it an encouraging focus for therapeutic intervention in managing pulmonary disorders. This review highlights the current understanding of the roles of AGEs and (s)RAGE in pulmonary diseases and their potential as biomarkers and therapeutic targets for preventing and treating these pathologies.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
3
|
Liu J, Jin Z, Wang X, Jakoš T, Zhu J, Yuan Y. RAGE pathways play an important role in regulation of organ fibrosis. Life Sci 2023; 323:121713. [PMID: 37088412 DOI: 10.1016/j.lfs.2023.121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Organ fibrosis is a pathological process of fibroblast activation and excessive deposition of extracellular matrix after persistent tissue injury and therefore is a common endpoint of many organ pathologies. Multiple cellular types and soluble mediators, including chemokines, cytokines and non-peptidic factors, are implicated in fibrogenesis and the remodeling of tissue architecture. The molecular basis of the fibrotic process is complex and consists of closely intertwined signaling networks. Research has strived for a better understanding of these pathological mechanisms to potentially reveal novel therapeutic targets for fibrotic diseases. In light of new knowledge, the receptor for advanced glycation end products (RAGE) emerged as an important candidate for the regulation of a wide variety of cellular functions related to fibrosis, including inflammation, cell proliferation, apoptosis, and angiogenesis. RAGE is a pattern recognition receptor that binds a broad range of ligands such as advanced glycation end products, high mobility group box-1, S-100 calcium-binding protein and amyloid beta protein. Although the link between RAGE and fibrosis has been established, the exact mechanisms need be investigated in further studies. The aim of this review is to collect all available information about the intricate function of RAGE and its signaling cascades in the pathogenesis of fibrotic diseases within different organs. In addition, to the major ligands and signaling pathways, we discuss potential strategies for targeting RAGE in fibrosis. We emphasize the functional links between RAGE, inflammation and fibrosis that may guide further studies and the development of improved therapeutic drugs.
Collapse
Affiliation(s)
- Jing Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Zhedong Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Xiaolong Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Tanja Jakoš
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University School of Pharmacy, Shanghai 201100, China.
| |
Collapse
|
4
|
Yamaguchi K, Iwamoto H, Sakamoto S, Horimasu Y, Masuda T, Miyamoto S, Nakashima T, Fujitaka K, Hamada H, Hattori N. Association of the RAGE/RAGE-ligand axis with interstitial lung disease and its acute exacerbation. Respir Investig 2022; 60:531-542. [PMID: 35504814 DOI: 10.1016/j.resinv.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The receptor for advanced glycation end product (RAGE) is a transmembrane receptor highly expressed in type 1 pneumocytes of healthy lungs. RAGE is considered to play a homeostatic role in the lung, as RAGE knockout mice develop lung fibrosis as they age. In contrast, RAGE can bind numerous ligands, including high-mobility group box 1 (HMGB1). These interactions initiate pro-inflammatory signaling associated with the pathogenesis of lung injury and interstitial lung disease (ILD), including idiopathic pulmonary fibrosis (IPF). ILD is a broad category of diffuse parenchymal lung disease characterized by various extents of lung fibrosis and inflammation, and IPF is a common and progressive ILD of unknown cause. The prognosis of patients with IPF is poor, and acute exacerbation of IPF (AE-IPF) is one of the main causes of death. Recent reports indicate that acute exacerbations can occur in other ILDs (AE-ILD). Notably, ILD is frequently observed in patients with lung cancer, and AE-ILD after surgical procedures or the initiation of chemotherapy for concomitant lung cancer are clinically important due to their association with increased mortality. In this review, we summarize the associations of RAGE/soluble RAGE (sRAGE)/RAGE ligands with the pathogenesis and clinical course of ILD, including IPF and AE-IPF. Additionally, the potential use of sRAGE and RAGE ligands as predictive markers of AE-IPF and cancer treatment-triggered AE-ILD is also discussed.
Collapse
Affiliation(s)
- Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan.
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| |
Collapse
|
5
|
Piao C, Zhuang C, Ko MK, Hwang DW, Lee M. Pulmonary delivery of a recombinant RAGE antagonist peptide derived from high-mobility group box-1 in a bleomycin-induced pulmonary fibrosis animal model. J Drug Target 2022; 30:792-799. [PMID: 35451894 DOI: 10.1080/1061186x.2022.2069781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by irreversible fibrosis and destruction of the alveolar structure. Receptor for advanced glycation end-products (RAGE) has been identified as one of the key molecules involved in IPF pathogenesis. A RAGE antagonist peptide (RAP) was developed based on the RAGE-binding domain of high mobility group box-1 (HMGB-1). Anti-IPF effects of RAP were evaluated in a bleomycin-induced mouse model of IPF. Bleomycin was administered intratracheally, and then RAP was administrated twice by intratracheal instillation, 1 and 3 days after bleomycin challenge. Seven days after the bleomycin challenge, the mice were sacrificed and the lungs were harvested. The results showed that pulmonary hydroxyproline was reduced in mice administered RAP compared with the control group. Tumor growth factor-β (TGF-β), α-smooth muscle actin (α-SMA), and collagen were also reduced by RAP administration in a dose-dependent manner. Longer-term effects of RAP were investigated in mice challenged with bleomycin. RAP was administered intratracheally every 7 days for 28 days, after which lung samples were harvested and analyzed. The results showed that hydroxyproline, TGF-β, α-SMA, and collagen were reduced by repeated RAP administration. Taken together, the results suggest that RAP is useful for treatment of IPF.
Collapse
Affiliation(s)
- Chunxian Piao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Chuanyu Zhuang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Min Kyung Ko
- THERABEST, Co, Inc. Seocho-daero 40-gil, Seoul 06657, Korea
| | - Do Won Hwang
- THERABEST, Co, Inc. Seocho-daero 40-gil, Seoul 06657, Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
6
|
Perkins TN, Oury TD. The perplexing role of RAGE in pulmonary fibrosis: causality or casualty? Ther Adv Respir Dis 2021; 15:17534666211016071. [PMID: 34275342 PMCID: PMC8293846 DOI: 10.1177/17534666211016071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease in which most patients die within 3 years of diagnosis. With an unknown etiology, IPF results in progressive fibrosis of the lung parenchyma, diminishing normal lung function, which results in respiratory failure, and eventually, death. While few therapies are available to reduce disease progression, patients continue to advance toward respiratory failure, leaving lung transplantation the only viable option for survival. As incidence and mortality rates steadily increase, the need for novel therapeutics is imperative. The receptor for advanced glycation endproducts (RAGE) is most highly expressed in the lungs and plays a significant role in a number of chronic lung diseases. RAGE has long been linked to IPF; however, confounding data from both human and experimental studies have left an incomplete and perplexing story. This review examines the present understanding of the role of RAGE in human and experimental models of IPF, drawing parallels to recent advances in RAGE biology. Moreover, this review discusses the role of RAGE in lung injury response, type 2 immunity, and cellular senescence, and how such mechanisms may relate to RAGE as both a biomarker of disease progression and potential therapeutic target in IPF.The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Timothy N Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, 3550 Terrace Street, S-784 Scaife Hall, Pittsburgh, PA 15261, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Watanabe M, Horimasu Y, Iwamoto H, Yamaguchi K, Sakamoto S, Masuda T, Nakashima T, Miyamoto S, Ohshimo S, Fujitaka K, Hamada H, Kohno N, Hattori N. C-C Motif Chemokine Ligand 15 May Be a Useful Biomarker for Predicting the Prognosis of Patients with Chronic Hypersensitivity Pneumonitis. Respiration 2019; 98:212-220. [PMID: 31416084 DOI: 10.1159/000500576] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/25/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic hypersensitivity pneumonitis (CHP) is characterized by lymphocytic inflammation and progressive fibrosis of the lung caused by a variety of inhaled antigens. Due to the difficulty of accurately diagnosing CHP, and the poor prognosis associated with the condition, a novel clinical biomarker is urgently needed. OBJECTIVE To investigate the usefulness of C-C motif chemokine ligand 15 (CCL15), which had been demonstrated to highly express in the lungs of CHP patients, as a clinical biomarker for CHP. METHOD Immunohistochemical investigations were performed on lung tissue from CHP patients, and CCL15 levels in serum and bronchoalveolar lavage fluid (BALF) were measured via the enzyme-linked immunosorbent assay. RESULTS Immunohistochemistry investigations revealed high CCL15 expression in the lungs of CHP patients. Serum CCL15 levels in CHP patients (29.1 ± 2.1 μg/mL) were significantly higher than those of idiopathic pulmonary fibrosis patients (19.7 ± 1.3 μg/mL, p = 0.01) and healthy subjects (19.5 ± 1.7 μg/mL, p = 0.003). When BALF CCL15 level was divided by BALF albumin (Alb) level (BALF CCL15/Alb), it was significantly inversely correlated with forced vital capacity (β = -0.47, p = 0.0006), percentage of predicted carbon monoxide diffusion capacity of the lung (β = -0.41, p = 0.0048), and BALF lymphocyte count (β = -0.34, p = 0.01) in CHP patients. Multivariate Cox proportional hazards analysis revealed that high BALF CCL15/Alb and poor prognosis were statistically significantly independently correlated in CHP patients (HR 1.1, 95% CI 1.03-1.18, p = 0.004). CONCLUSION The results of the current study suggest that CCL15 may be a useful prognostic biomarker for CHP. CCL15 was highly expressed in the lung tissue of CHP patients, and BALF CCL15/Alb was significantly associated with CHP prognosis.
Collapse
Affiliation(s)
- Masako Watanabe
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan,
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Nobuoki Kohno
- Hiroshima Cosmopolitan University, Minami-ku, Hiroshima, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| |
Collapse
|
8
|
Oczypok EA, Perkins TN, Oury TD. All the "RAGE" in lung disease: The receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses. Paediatr Respir Rev 2017; 23:40-49. [PMID: 28416135 PMCID: PMC5509466 DOI: 10.1016/j.prrv.2017.03.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
The receptor for advanced glycation endproducts (RAGE) is a pro-inflammatory pattern recognition receptor (PRR) that has been implicated in the pathogenesis of numerous inflammatory diseases. It was discovered in 1992 on endothelial cells and was named for its ability to bind advanced glycation endproducts and promote vascular inflammation in the vessels of patients with diabetes. Further studies revealed that RAGE is most highly expressed in lung tissue and spurred numerous explorations into RAGE's role in the lung. These studies have found that RAGE is an important mediator in allergic airway inflammation (AAI) and asthma, pulmonary fibrosis, lung cancer, chronic obstructive pulmonary disease (COPD), acute lung injury, pneumonia, cystic fibrosis, and bronchopulmonary dysplasia. RAGE has not yet been targeted in the lungs of paediatric or adult clinical populations, but the development of new ways to inhibit RAGE is setting the stage for the emergence of novel therapeutic agents for patients suffering from these pulmonary conditions.
Collapse
Affiliation(s)
| | | | - Tim D. Oury
- Corresponding author. Tel.: +1 412 648 9659; Fax: +1 412 648 9527
| |
Collapse
|
9
|
Plasma Soluble Receptor for Advanced Glycation End Products in Idiopathic Pulmonary Fibrosis. Ann Am Thorac Soc 2017; 14:628-635. [PMID: 28248552 PMCID: PMC5427736 DOI: 10.1513/annalsats.201606-485oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RATIONALE The receptor for advanced glycation end products (RAGE) is underexpressed in idiopathic pulmonary fibrosis (IPF) lung, but the role of RAGE in human lung fibrosis remains uncertain. OBJECTIVES To examine (1) the association between IPF risk and variation at rs2070600, a functional missense variant in AGER (the gene that codes for RAGE), and (2) the associations between plasma-soluble RAGE (sRAGE) levels with disease severity and time to death or lung transplant in IPF. METHODS We genotyped the rs2070600 single-nucleotide polymorphism in 108 adults with IPF and 324 race-/ethnicity-matched control subjects. We measured plasma sRAGE by ELISA in 103 adults with IPF. We used generalized linear and additive models as well as Cox models to control for potential confounders. We repeated our analyses in 168 (genetic analyses) and 177 (sRAGE analyses) adults with other forms of interstitial lung disease (ILD). RESULTS There was no association between rs2070600 variation among adults with IPF (P = 0.31). Plasma sRAGE levels were lower among adults with IPF and other forms of ILD than in control subjects (P < 0.001). The rs2070600 allele A was associated with a 49% lower sRAGE level (95% confidence interval [CI], 11 to 71%; P = 0.02) among adults with IPF. In adjusted analyses, lower sRAGE levels were associated with greater disease severity (14% sRAGE decrement per 10% FVC decrement; 95% CI, 5 to 22%) and a higher rate of death or lung transplant at 1 year (adjusted hazard ratio, 1.9 per logarithmic unit of sRAGE decrement; 95% CI, 1.2-3.3) in IPF. Similar findings were observed in a heterogeneous group of adults with other forms of ILD. CONCLUSIONS Lower plasma sRAGE levels may be a biological measure of disease severity in IPF. Variation at the rs2070600 single-nucleotide polymorphism was not associated with IPF risk.
Collapse
|
10
|
Weber DJ, Allette YM, Wilkes DS, White FA. The HMGB1-RAGE Inflammatory Pathway: Implications for Brain Injury-Induced Pulmonary Dysfunction. Antioxid Redox Signal 2015; 23:1316-28. [PMID: 25751601 PMCID: PMC4685484 DOI: 10.1089/ars.2015.6299] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Deceased patients who have suffered severe traumatic brain injury (TBI) are the largest source of organs for lung transplantation. However, due to severely compromised pulmonary lung function, only one-third of these patients are eligible organ donors, with far fewer capable of donating lungs (∼ 20%). As a result of this organ scarcity, understanding and controlling the pulmonary pathophysiology of potential donors are key to improving the health and long-term success of transplanted lungs. RECENT ADVANCES Although the exact mechanism by which TBI produces pulmonary pathophysiology remains unclear, it may be related to the release of damage-associated molecular patterns (DAMPs) from the injured tissue. These heterogeneous, endogenous host molecules can be rapidly released from damaged or dying cells and mediate sterile inflammation following trauma. In this review, we highlight the interaction of the DAMP, high-mobility group box protein 1 (HMGB1) with the receptor for advanced glycation end-products (RAGE), and toll-like receptor 4 (TLR4). CRITICAL ISSUES Recently published studies are reviewed, implicating the release of HMGB1 as producing marked changes in pulmonary inflammation and physiology following trauma, followed by an overview of the experimental evidence demonstrating the benefits of blocking the HMGB1-RAGE axis. FUTURE DIRECTIONS Targeting the HMGB1 signaling axis may increase the number of lungs available for transplantation and improve long-term benefits for organ recipient patient outcomes.
Collapse
Affiliation(s)
- Daniel J Weber
- 1 Center for Immunobiology, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - Yohance M Allette
- 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
| | - David S Wilkes
- 1 Center for Immunobiology, Indiana University School of Medicine , Indianapolis, Indiana.,4 Department of Medicine, Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Fletcher A White
- 1 Center for Immunobiology, Indiana University School of Medicine , Indianapolis, Indiana.,5 Department of Anesthesia, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
11
|
Schultze BS, Ridner SH. Death by Sugar: The Impact of Sugar on Acutely Ill Patients. J Nurse Pract 2015. [DOI: 10.1016/j.nurpra.2015.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Opposite behavior of plasma levels surfactant protein type B and receptor for advanced glycation end products in pulmonary sarcoidosis. Respir Med 2013; 107:1617-24. [DOI: 10.1016/j.rmed.2013.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 05/13/2013] [Accepted: 07/24/2013] [Indexed: 11/18/2022]
|
13
|
Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int J Inflam 2013; 2013:403460. [PMID: 24102034 PMCID: PMC3786507 DOI: 10.1155/2013/403460] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/29/2013] [Indexed: 02/06/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a transmembrane receptor of the immunoglobulin superfamily, capable of binding a broad repertoire of ligands. RAGE-ligands interaction induces a series of signal transduction cascades and lead to the activation of transcription factor NF-κB as well as increased expression of cytokines, chemokines, and adhesion molecules. These effects endow RAGE with the role in the signal transduction from pathogen substrates to cell activation during the onset and perpetuation of inflammation. RAGE signaling and downstream pathways have been implicated in a wide spectrum of inflammatory-related pathologic conditions such as arteriosclerosis, Alzheimer's disease, arthritis, acute respiratory failure, and sepsis. Despite the significant progress in other RAGE studies, the functional importance of the receptor in clinical situations and inflammatory diseases still remains to be fully realized. In this review, we will summarize current understandings and lines of evidence on the molecular mechanisms through which RAGE signaling contributes to the pathogenesis of the aforementioned inflammation-associated conditions.
Collapse
|
14
|
Stogsdill MP, Stogsdill JA, Bodine BG, Fredrickson AC, Sefcik TL, Wood TT, Kasteler SD, Reynolds PR. Conditional overexpression of receptors for advanced glycation end-products in the adult murine lung causes airspace enlargement and induces inflammation. Am J Respir Cell Mol Biol 2013; 49:128-34. [PMID: 23526218 DOI: 10.1165/rcmb.2013-0013oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Receptors for advanced glycation end-products (RAGE) are multiligand surface receptors detected abundantly in pulmonary tissue. Our previous work revealed increased RAGE expression in cells and lungs exposed to tobacco smoke and RAGE-mediated cytokine expression via proinflammatory mechanisms involving NF-κB. RAGE expression is elevated in various pathological states, including chronic obstructive pulmonary disease; however, precise contributions of RAGE to the progression of emphysema and pulmonary inflammation in the adult lung are unknown. In the current study, we generated a RAGE transgenic (RAGE TG) mouse and conditionally induced adult alveolar epithelium to overexpress RAGE. RAGE was induced after the period of alveologenesis, from weaning (20 d of age) until animals were killed at 50, 80, and 110 days (representing 30, 60, and 90 d of RAGE overexpression). Hematoxylin and eosin staining and mean chord length revealed incremental dilation of alveolar spaces as RAGE overexpression persisted. TUNEL staining and electron microscopy confirmed increased apoptosis and blebbing of alveolar epithelium in lungs from RAGE TG mice when compared with control mice. Immunohistochemistry for matrix metalloproteinase 9 revealed an overall increase in matrix metalloproteinase 9, which correlated with decreased elastin expression in RAGE TG mice. Furthermore, RAGE TG mice manifested significant inflammation measured by elevated bronchoalveolar lavage protein, leukocyte infiltration, and secreted cytokines. These data support the concept that innovative transgenic mice that overexpress RAGE may model pulmonary inflammation and alveolar destabilization independent of tobacco smoke and validate RAGE signaling as a target pathway in the prevention or attenuation of smoke-related inflammatory lung diseases.
Collapse
Affiliation(s)
- Megan P Stogsdill
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Song JS, Kang CM, Park CK, Yoon HK, Lee SY, Ahn JH, Moon HS. Inhibitory effect of receptor for advanced glycation end products (RAGE) on the TGF-β-induced alveolar epithelial to mesenchymal transition. Exp Mol Med 2012; 43:517-24. [PMID: 21743278 DOI: 10.3858/emm.2011.43.9.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal parenchymal lung disease characterized by myofibroblast proliferation. Alveolar epithelial cells (AECs) are thought to produce myofibroblasts through the epithelial to mesenchymal transition (EMT). Receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptors whose activation is associated with renal fibrosis during diabetes and liver fibrosis. RAGE is expressed at low basal levels in most adult tissues except the lung. In this study, we evaluated the interaction of ligand advanced glycation end products (AGE) with RAGE during the epithelial to myofibroblast transition in rat AECs. Our results indicate that AGE inhibited the TGF-β-dependent alveolar EMT by increasing Smad7 expression, and that the effect was abolished by RAGE siRNA treatment. Thus, the induction of Smad7 by the AGE-RAGE interaction limits the development of pulmonary fibrosis by inhibiting TGF-β-dependent signaling in AECs.
Collapse
Affiliation(s)
- Jeong Sup Song
- Department of Internal Medicine, Yeouido St. Mary's Hospital, The Catholic University of Korea, School of Medicine, Seoul 150-713, Korea.
| | | | | | | | | | | | | |
Collapse
|
16
|
The receptor for advanced glycation end products (RAGE) and the lung. J Biomed Biotechnol 2010; 2010:917108. [PMID: 20145712 PMCID: PMC2817378 DOI: 10.1155/2010/917108] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/27/2009] [Accepted: 10/09/2009] [Indexed: 12/31/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface molecules. As a pattern-recognition receptor capable of binding a diverse range of ligands, it is typically expressed at low levels under normal physiological conditions in the majority of tissues. In contrast, the lung exhibits high basal level expression of RAGE localised primarily in alveolar type I (ATI) cells, suggesting a potentially important role for the receptor in maintaining lung homeostasis. Indeed, disruption of RAGE levels has been implicated in the pathogenesis of a variety of pulmonary disorders including cancer and fibrosis. Furthermore, its soluble isoforms, sRAGE, which act as decoy receptors, have been shown to be a useful marker of ATI cell injury. Whilst RAGE undoubtedly plays an important role in the biology of the lung, it remains unclear as to the exact nature of this contribution under both physiological and pathological conditions.
Collapse
|
17
|
Role of RAGE in idiopathic pulmonary fibrosis: Promising prospects. Respir Physiol Neurobiol 2009. [DOI: 10.1016/j.resp.2008.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|