1
|
Joyce K, Lucas S, Imray C, Balanos G, Wright AD. Advances in the available non-biological pharmacotherapy prevention and treatment of acute mountain sickness and high altitude cerebral and pulmonary oedema. Expert Opin Pharmacother 2018; 19:1891-1902. [DOI: 10.1080/14656566.2018.1528228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- K.E. Joyce
- School of Sport, Exercise, & Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - S.J.E. Lucas
- School of Sport, Exercise, & Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - C.H.E. Imray
- Department of Vascular Surgery, University Hospitals of Coventry and Warwickshire; Warwick Medical School, Coventry, UK
| | - G.M Balanos
- School of Sport, Exercise, & Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - A. D. Wright
- Department of Medicine, University of Birmingham, Edgbaston, UK
| |
Collapse
|
2
|
Summerfield DT, Coffman KE, Taylor BJ, Issa AN, Johnson BD. Exhaled Nitric Oxide Changes During Acclimatization to High Altitude: A Descriptive Study. High Alt Med Biol 2018; 19:215-220. [PMID: 29757001 DOI: 10.1089/ham.2017.0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Summerfield, Douglas T., Kirsten E. Coffman, Bryan J. Taylor, Amine N. Issa, and Bruce D. Johnson. Exhaled nitric oxide changes during acclimatization to high altitude: a descriptive study. High Alt Med Biol. 19:215-220, 2018. AIMS This study describes differences in the partial pressures of exhaled nitric oxide (PeNO) between subjects fully acclimatized (ACC) to 5300 m and those who have just arrived to high altitude. METHODS PeNO was determined in eight subjects newly exposed and nonacclimatized (non-ACC) to high altitude and compared with that in nine subjects who had ACC to high altitude for 1 month. In addition, systolic pulmonary artery pressure (sPAP) and arterial oxygen saturation (SaO2) were measured in all participants. These measurements were repeated in the non-ACC group 5 and 9 days later. RESULTS PeNO levels on day 1 were significantly higher in the non-ACC versus ACC cohort (8.7 ± 3.5 vs. 3.9 ± 2.2 nmHg, p = 0.004). As the non-ACC group remained at altitude, PeNO levels fell and were not different when compared with those of the ACC group by day 9 (5.9 ± 2.4 vs. 3.9 ± 2.2 nmHg, p = 0.095). Higher sPAP was correlated with lower PeNO levels in all participants (R = -0.50, p = 0.043). PeNO levels were not correlated with SaO2. CONCLUSIONS As individuals acclimatized to high altitude, PeNO levels decreased. Even after acclimatization, PeNO levels continued to play a role in pulmonary vascular tone.
Collapse
Affiliation(s)
| | - Kirsten E Coffman
- 2 Mayo Clinic Graduate School of Biomedical Sciences , Mayo Clinic, Rochester, Minnesota
| | - Bryan J Taylor
- 3 School of Biomedical Sciences, University of Leeds , Leeds, United Kingdom
| | - Amine N Issa
- 4 Department of Cardiovascular Diseases, Mayo Clinic , Rochester, Minnesota
| | - Bruce D Johnson
- 4 Department of Cardiovascular Diseases, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
3
|
Woessner MN, McIlvenna LC, Ortiz de Zevallos J, Neil CJ, Allen JD. Dietary nitrate supplementation in cardiovascular health: an ergogenic aid or exercise therapeutic? Am J Physiol Heart Circ Physiol 2018; 314:H195-H212. [DOI: 10.1152/ajpheart.00414.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oral consumption of inorganic nitrate, which is abundant in green leafy vegetables and roots, has been shown to increase circulating plasma nitrite concentration, which can be converted to nitric oxide in low oxygen conditions. The associated beneficial physiological effects include a reduction in blood pressure, modification of platelet aggregation, and increases in limb blood flow. There have been numerous studies of nitrate supplementation in healthy recreational and competitive athletes; however, the ergogenic benefits are currently unclear due to a variety of factors including small sample sizes, different dosing regimens, variable nitrate conversion rates, the heterogeneity of participants’ initial fitness levels, and the types of exercise tests used. In clinical populations, the study results seem more promising, particularly in patients with cardiovascular diseases who typically present with disruptions in the ability to transport oxygen from the atmosphere to working tissues and reduced exercise tolerance. Many of these disease-related, physiological maladaptations, including endothelial dysfunction, increased reactive oxygen species, reduced tissue perfusion, and muscle mitochondrial dysfunction, have been previously identified as potential targets for nitric oxide restorative effects. This review is the first of its kind to outline the current evidence for inorganic nitrate supplementation as a therapeutic intervention to restore exercise tolerance and improve quality of life in patients with cardiovascular diseases. We summarize the factors that appear to limit or maximize its effectiveness and present a case for why it may be more effective in patients with cardiovascular disease than as ergogenic aid in healthy populations.
Collapse
Affiliation(s)
- Mary N. Woessner
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
| | - Luke C. McIlvenna
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Joaquin Ortiz de Zevallos
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| | - Christopher J. Neil
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
| | - Jason D. Allen
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
4
|
Gasier HG, Reinhold AR, Loiselle AR, Soutiere SE, Fothergill DM. Effects of oral sodium nitrate on forearm blood flow, oxygenation and exercise performance during acute exposure to hypobaric hypoxia (4300 m). Nitric Oxide 2017; 69:1-9. [DOI: 10.1016/j.niox.2017.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/16/2017] [Accepted: 07/01/2017] [Indexed: 10/19/2022]
|
5
|
Luks AM, Levett D, Martin DS, Goss CH, Mitchell K, Fernandez BO, Feelisch M, Grocott MP, Swenson ER. Changes in acute pulmonary vascular responsiveness to hypoxia during a progressive ascent to high altitude (5300 m). Exp Physiol 2017; 102:711-724. [PMID: 28390080 DOI: 10.1113/ep086083] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 04/03/2017] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do the pulmonary vascular responses to hypoxia change during progressive exposure to high altitude and can alterations in these responses be related to changes in concentrations of circulating biomarkers that affect the pulmonary circulation? What is the main finding and its importance? In our field study with healthy volunteers, we demonstrate changes in pulmonary artery pressure suggestive of remodelling in the pulmonary circulation, but find no changes in the acute responsiveness of the pulmonary circulation to changes in oxygenation during 2 weeks of exposure to progressive hypoxia. Pulmonary artery pressure changes were associated with changes in erythropoietin, 8-isoprostane, nitrite and guanosine 3',5'-cyclic monophosphate. We sought to determine whether changes in pulmonary artery pressure responses to hypoxia suggestive of vascular remodelling occur during progressive exposure to high altitude and whether such alterations are related to changes in concentrations of circulating biomarkers with known or suspected actions on the pulmonary vasculature during ascent. We measured tricuspid valve transvalvular pressure gradients (TVPG) in healthy volunteers breathing air at sea level (London, UK) and in hypoxic conditions simulating the inspired O2 partial pressures at two locations in Nepal, Namche Bazaar (NB, elevation 3500 m) and Everest Base Camp (EBC, elevation 5300 m). During a subsequent 13 day trek, TVPG was measured at NB and EBC while volunteers breathed air and hyperoxic or hypoxic mixtures simulating the inspired O2 partial pressures at the other locations. For each location, we determined the slope of the relationship between TVPG and arterial oxygen saturation (SaO2) to estimate the pulmonary vascular response to hypoxia. Mean TVPG breathing air was higher at any SaO2 at EBC than at sea level or NB, but there was no change in the slope of the relationship between SaO2 and TVPG between locations. Nitric oxide availability remained unchanged despite increases in oxidative stress (elevated 8-isoprostane). Erythropoietin, pro-atrial natriuretic peptide and interleukin-18 levels progressively increased on ascent. Associations with TVPG were observed only with erythropoietin, 8-isoprostane, nitrite and guanosine 3',5'-cyclic monophosphate. Although the increased TVPG for any given SaO2 at EBC suggests that pulmonary vascular remodelling might occur during 2 weeks of progressive hypoxia, the lack of change in the slope of the relationship between TVPG and SaO2 indicates that the acute pulmonary vascular responsiveness to changes in oxygenation does not vary within this time frame.
Collapse
Affiliation(s)
- Andrew M Luks
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Denny Levett
- University College London Centre for Altitude Space and Extreme Environment Medicine, University College London Hospitals National Institute for Health Research (UCLH NIHR) Biomedical Research Centre, Institute of Sport and Exercise Health, London, UK.,Anaesthesia and Critical Care Research Unit, University Hospital Southampton National Health Service Foundation Trust, Southampton, UK.,Integrative Physiology and Critical Illness Group, Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Southampton National Institutes for Health Research (NIHR) Respiratory Biomedical Research Unit, Southampton, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Daniel S Martin
- University College London Centre for Altitude Space and Extreme Environment Medicine, University College London Hospitals National Institute for Health Research (UCLH NIHR) Biomedical Research Centre, Institute of Sport and Exercise Health, London, UK
| | | | - Kay Mitchell
- University College London Centre for Altitude Space and Extreme Environment Medicine, University College London Hospitals National Institute for Health Research (UCLH NIHR) Biomedical Research Centre, Institute of Sport and Exercise Health, London, UK.,Anaesthesia and Critical Care Research Unit, University Hospital Southampton National Health Service Foundation Trust, Southampton, UK.,Integrative Physiology and Critical Illness Group, Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Southampton National Institutes for Health Research (NIHR) Respiratory Biomedical Research Unit, Southampton, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Bernadette O Fernandez
- Integrative Physiology and Critical Illness Group, Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Martin Feelisch
- Integrative Physiology and Critical Illness Group, Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Southampton National Institutes for Health Research (NIHR) Respiratory Biomedical Research Unit, Southampton, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Michael P Grocott
- University College London Centre for Altitude Space and Extreme Environment Medicine, University College London Hospitals National Institute for Health Research (UCLH NIHR) Biomedical Research Centre, Institute of Sport and Exercise Health, London, UK.,Anaesthesia and Critical Care Research Unit, University Hospital Southampton National Health Service Foundation Trust, Southampton, UK.,Integrative Physiology and Critical Illness Group, Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Southampton National Institutes for Health Research (NIHR) Respiratory Biomedical Research Unit, Southampton, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Erik R Swenson
- Department of Medicine, University of Washington, Seattle, WA, USA.,Medical Service, Veterans Affairs (VA) Puget Sound Health Care System, Seattle, WA, USA
| | | |
Collapse
|
6
|
Van Iterson EH, Snyder EM, Johnson BD. The Influence of 17 Hours of Normobaric Hypoxia on Parallel Adjustments in Exhaled Nitric Oxide and Airway Function in Lowland Healthy Adults. High Alt Med Biol 2017; 18:1-10. [PMID: 28135110 DOI: 10.1089/ham.2016.0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Van Iterson, Erik H., Eric M. Snyder, and Bruce D. Johnson. The influence of 17 hours of normobaric hypoxia on parallel adjustments in exhaled nitric oxide and airway function in lowland healthy adults. High Alt Med Biol. 18:1-10, 2017.-Currently, there is a disparate understanding of the role that normobaric hypoxia plays in affecting nitric oxide (NO) measured in exhaled air (eNO) and airway function in lowland healthy adults. Compared to normobaric normoxia, this study aimed to test the effect of 17 hours of normobaric hypoxia on relationships between eNO and airway function in healthy adults. In a crossover study including 2 separate visits, 26 lowland healthy Caucasian adults performed eNO and pulmonary function tests on visit 1 in normobaric normoxia, while repeating all tests on visit 2 following 17 hours of normobaric hypoxia (12.5% O2). Compared to normobaric normoxia, eNO (29 ± 24 vs. 36 ± 28 ppb), forced expiratory volume in one second (FEV1) (4.1 ± 0.7 vs. 4.3 ± 0.8 L), mean forced expiratory flow between 25% and 75% FVC (FEF25-75) (3.9 ± 1.0 vs. 4.2 ± 1.2 L/s), and forced expiratory flow at 75% FVC (FEF75) (2.0 ± 0.7 vs. 2.3 ± 0.8 L/s) increased in normobaric hypoxia, respectively (all p < 0.05). Correlations at normoxia between eNO and FEV1 (r = 0.39 vs. 0.44), FEF25-75 (r = 0.51 vs. 0.51), and FEF75 (r = 0.53 vs. 0.55) persisted as both parameters increased in hypoxia, respectively. For the first time, these data suggest that 17 hours of hypoxic breathing in the absence of low ambient pressure contribute to increased eNO and airway function in lowland healthy adults.
Collapse
Affiliation(s)
- Erik H Van Iterson
- 1 Department of Cardiovascular Diseases, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Eric M Snyder
- 2 Department of Kinesiology, University of Minnesota , Minneapolis, Minnesota
| | - Bruce D Johnson
- 1 Department of Cardiovascular Diseases, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
7
|
Heinzer R, Saugy JJ, Rupp T, Tobback N, Faiss R, Bourdillon N, Rubio JH, Millet GP. Comparison of Sleep Disorders between Real and Simulated 3,450-m Altitude. Sleep 2016; 39:1517-23. [PMID: 27166242 DOI: 10.5665/sleep.6010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/12/2016] [Indexed: 02/05/2023] Open
Abstract
STUDY OBJECTIVES Hypoxia is known to generate sleep-disordered breathing but there is a debate about the pathophysiological responses to two different types of hypoxic exposure: normobaric hypoxia (NH) and hypobaric hypoxia (HH), which have never been directly compared. Our aim was to compare sleep disorders induced by these two types of altitude. METHODS Subjects were exposed to 26 h of simulated (NH) or real altitude (HH) corresponding to 3,450 m and a control condition (NN) in a randomized order. The sleep assessments were performed with nocturnal polysomnography (PSG) and questionnaires. Thirteen healthy trained males subjects volunteered for this study (mean ± SD; age 34 ± 9 y, body weight 76.2 ± 6.8 kg, height 179.7 ± 4.2 cm). RESULTS Mean nocturnal oxygen saturation was further decreased during HH than in NH (81.2 ± 3.1 versus 83.6 ± 1.9%; P < 0.01) when compared to NN (95.5 ± 0.9%; P < 0.001). Heart rate was higher in HH than in NH (61 ± 10 versus 55 ± 6 bpm; P < 0.05) and NN (48 ± 5 bpm; P < 0.001). Total sleep time was longer in HH than in NH (351 ± 63 versus 317 ± 65 min, P < 0.05), and both were shorter compared to NN (388 ± 50 min, P < 0.05). Breathing frequency did not differ between conditions. Apnea-hypopnea index was higher in HH than in NH (20.5 [15.8-57.4] versus 11.4 [5.0-65.4]; P < 0.01) and NN (8.2 [3.9-8.8]; P < 0.001). Subjective sleep quality was similar between hypoxic conditions but lower than in NN. CONCLUSIONS Our results suggest that HH has a greater effect on nocturnal breathing and sleep structure than NH. In HH, we observed more periodic breathing, which might arise from the lower saturation due to hypobaria, but needs to be confirmed.
Collapse
Affiliation(s)
- Raphaël Heinzer
- Center for Investigation and Research in Sleep, CHUV, Lausanne, Switzerland
| | - Jonas J Saugy
- ISSUL, Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland.,Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Thomas Rupp
- Savoie Mont Blanc University, Exercise Physiology Laboratory, Chambery, France
| | - Nadia Tobback
- Center for Investigation and Research in Sleep, CHUV, Lausanne, Switzerland
| | - Raphael Faiss
- ISSUL, Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland.,Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Nicolas Bourdillon
- ISSUL, Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland.,Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - José Haba Rubio
- Center for Investigation and Research in Sleep, CHUV, Lausanne, Switzerland
| | - Grégoire P Millet
- ISSUL, Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland.,Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| |
Collapse
|
8
|
Gochicoa-Rangel L, Rojas-Cisneros F, Miguel-Reyes JL, Guerrero-Zúñiga S, Mora-Romero U, Maldonado-Mortera AK, Torre-Bouscoulet L. Variability of FeNO in healthy subjects at 2240 meters above sea level. J Clin Monit Comput 2015; 30:445-9. [PMID: 26174797 DOI: 10.1007/s10877-015-9737-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
Fraction of exhaled nitric oxide (FeNO) is a marker of eosinophilic airway inflammation. Altitude above sea level can affect measurements of this index, but there is only limited information regarding the diurnal variation (ante meridiem vs. post meridiem) and reproducibility of FeNO on consecutive days at moderate altitudes. To evaluate the diurnal variability of FeNO and assess its reproducibility over five consecutive days in healthy individuals living at 2240 m, and to compare the FeNO readings taken with two different analyzers. Healthy non-smoking adults were measured using NIOX MINO(®) or NOA 280i(®) devices. One group (n = 10) had readings taken morning and afternoon for five consecutive days with the NIOX MINO(®) equipment; while the second group (n = 17) was measured on only one morning but by both the electrochemical analyzer (NIOX MINO(®)) and the chemiluminescence method (NOA 280i(®)). The study group consisted of 27 subjects aged 28.7 ± 6 years. Morning and afternoon FeNO measurements were 15.2 ± 7.5 ppb and 15.2 ± 7.9 ppb (p = 0.9), respectively. The coefficient of variation (CV) of these measurements (a.m. vs. p.m.) was 10.7 %, and the coefficient of repeatability (CR), 4.2 ppb. The concordance correlation coefficient (CCC) between the two measures (morning vs. afternoon) was 0.91. The CV and CR of the five morning readings were 15.4 % and 4.3 ppb, respectively; while those of the five afternoon measures were 13.6 % and 3.5 ppb, respectively. The CCC between the NIOX MINO(®) equipment and the NOA-280i(®) device was 0.8, with 95 % limits of agreement of -8.35 to 0.29 ppb. In adults living at 2240 m above sea level, FeNO measurements show minimal diurnal variation, and readings are reproducible (<15 %) over a period of at least five consecutive days; however, the FeNO measurements obtained with the NIOX MINO(®) and NOA 280i(®) devices are not interchangeable due to the wide limits of agreement recorded.
Collapse
Affiliation(s)
- Laura Gochicoa-Rangel
- Departamento de Fisiología Respiratoria, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, C.P. 14080, Mexico City, Distrito Federal, Mexico
| | - Fermín Rojas-Cisneros
- Departamento de Fisiología Respiratoria, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, C.P. 14080, Mexico City, Distrito Federal, Mexico
| | - José Luis Miguel-Reyes
- Clínica de Asma, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Selene Guerrero-Zúñiga
- Departamento de Fisiología Respiratoria, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, C.P. 14080, Mexico City, Distrito Federal, Mexico
| | - Uri Mora-Romero
- Departamento de Fisiología Respiratoria, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, C.P. 14080, Mexico City, Distrito Federal, Mexico
| | - Ana Karen Maldonado-Mortera
- Departamento de Fisiología Respiratoria, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, C.P. 14080, Mexico City, Distrito Federal, Mexico
| | - Luis Torre-Bouscoulet
- Departamento de Fisiología Respiratoria, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, C.P. 14080, Mexico City, Distrito Federal, Mexico.
| |
Collapse
|
9
|
Hoiland RL, Foster GE, Donnelly J, Stembridge M, Willie CK, Smith KJ, Lewis NC, Lucas SJ, Cotter JD, Yeoman DJ, Thomas KN, Day TA, Tymko MM, Burgess KR, Ainslie PN. Chemoreceptor Responsiveness at Sea Level Does Not Predict the Pulmonary Pressure Response to High Altitude. Chest 2015; 148:219-225. [DOI: 10.1378/chest.14-1992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
10
|
Abstract
Hypoxic pulmonary vasoconstriction (HPV) represents a fundamental difference between the pulmonary and systemic circulations. HPV is active in utero, reducing pulmonary blood flow, and in adults helps to match regional ventilation and perfusion although it has little effect in healthy lungs. Many factors affect HPV including pH or PCO2, cardiac output, and several drugs, including antihypertensives. In patients with lung pathology and any patient having one-lung ventilation, HPV contributes to maintaining oxygenation, so anesthesiologists should be aware of the effects of anesthesia on this protective reflex. Intravenous anesthetic drugs have little effect on HPV, but it is attenuated by inhaled anesthetics, although less so with newer agents. The reflex is biphasic, and once the second phase becomes active after about an hour of hypoxia, this pulmonary vasoconstriction takes hours to reverse when normoxia returns. This has significant clinical implications for repeated periods of one-lung ventilation.
Collapse
|
11
|
The Relationship Between Baseline Exhaled Nitric Oxide Levels and Acute Mountain Sickness. Am J Med Sci 2015; 349:467-71. [DOI: 10.1097/maj.0000000000000384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
MacInnis MJ, Koch S, MacLeod KE, Carter EA, Jain R, Koehle MS, Rupert JL. Acute mountain sickness is not repeatable across two 12-hour normobaric hypoxia exposures. Wilderness Environ Med 2014; 25:143-51. [PMID: 24631230 DOI: 10.1016/j.wem.2013.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/11/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The purposes of this experiment were to determine the repeatability of acute mountain sickness (AMS), AMS symptoms, and physiological responses across 2 identical hypoxic exposures. METHODS Subjects (n = 25) spent 3 nights at simulated altitude in a normobaric hypoxia chamber: twice at a partial pressure of inspired oxygen (PIO2) of 90mmHg (4000 m equivalent; "hypoxia") and once at a PIO2 of 132 mmHg (1000 m equivalent; "sham") with 14 or more days between exposures. The following variables were measured at hours 0 and 12 of each exposure: AMS severity (ie, Lake Louise score [LLS]), AMS incidence (LLS ≥3), heart rate, oxygen saturation, blood pressure, and the fraction of exhaled nitric oxide. Oxygen saturation and heart rate were also measured while subjects slept. RESULTS The incidence of AMS was not statistically different between the 2 exposures (84% vs 56%, P > .05), but the severity of AMS (ie, LLS) was significantly lower on the second hypoxic exposure (mean [SD], 3.1 [1.8]) relative to the first hypoxic exposure (4.8 [2.3]; P < .001). Headache was the only AMS symptom to have a significantly greater severity on both hypoxic exposures (relative to the sham exposure, P < .05). Physiological variables were moderately to strongly repeatable (intraclass correlation range 0.39 to 0.86) but were not associated with AMS susceptibility (P > .05). CONCLUSIONS The LLS was not repeatable across 2 identical hypoxic exposures. Increased familiarity with the environment (not acclimation) could explain the reduced AMS severity on the second hypoxic exposure. Headache was the most reliable AMS symptom.
Collapse
Affiliation(s)
- Martin J MacInnis
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Sarah Koch
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristin E MacLeod
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric A Carter
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Radha Jain
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Koehle
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jim L Rupert
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Caspersen C, Stang J, Thorsen E, Stensrud T. Exhaled nitric oxide concentration upon acute exposure to moderate altitude. Scand J Med Sci Sports 2012; 23:e102-7. [PMID: 23157566 DOI: 10.1111/sms.12018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2012] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to assess immediate changes in the partial pressure of nitric oxide (NO) in exhaled gas (PE NO ) in healthy trained subjects who were acutely exposed to moderate altitude. One group of nine and another group of 20 healthy subjects were exposed to an ambient pressure of 728 hPa (546 mmHg) corresponding to an altitude of 2800 m for 5 and 90 min, respectively, in an altitude chamber. PE NO was measured offline by sampling exhaled gas in tight metal foil bags at 5, 30, 60, and 90 min. A correction for increased expiratory flow rate due to gas density effects at altitude was performed (PE NO corr). PE NO was significantly decreased by 13-16%, while the fraction of NO in exhaled gas (FE NO) was increased by 16-19% compared to sea level. There was no significant change in PE NO corr after exposure to altitude for 5, 30, 60, and 90 min. We conclude that there was no change in PENO upon arrival at altitude after correcting for gas density effects on expiratory flow rate. Corrections for altitude effects must be done before comparing measurements performed at different altitudes when using measurements of FENO to monitor athletes who have asthma during training at altitude.
Collapse
Affiliation(s)
- C Caspersen
- Institute of Medicine, University of Bergen, Bergen, Norway
| | | | | | | |
Collapse
|
14
|
Girard O, Koehle MS, MacInnis MJ, Guenette JA, Koehle MS, Verges S, Rupp T, Jubeau M, Perrey S, Millet GY, Chapman RF, Levine BD, Conkin J, Wessel JH, Nespoulet H, Wuyam B, Tamisier R, Verges S, Levy P, Casey DP, Taylor BJ, Snyder EM, Johnson BD, Laymon AS, Stickford JL, Weavil JC, Loeppky JA, Pun M, Schommer K, Bartsch P, Vagula MC, Nelatury CF. Comments on Point:Counterpoint: Hypobaric hypoxia induces/does not induce different responses from normobaric hypoxia. J Appl Physiol (1985) 2012; 112:1788-94. [PMID: 22589492 DOI: 10.1152/japplphysiol.00356.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Lung oxidative damage by hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:856918. [PMID: 22966417 PMCID: PMC3433143 DOI: 10.1155/2012/856918] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described.
Collapse
|
16
|
Bucca C, Cicolin A, Guida G, Heffler E, Brussino L, Rolla G. Exhaled nitric oxide (FENO) in non-pulmonary diseases. J Breath Res 2012; 6:027104. [PMID: 22549131 DOI: 10.1088/1752-7155/6/2/027104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Exhaled nitric oxide (F(E)NO) represents the only exhaled biomarker that has reached clinical practice even in primary care settings, due to the non-invasiveness of its assessment and ease of repeat measurements, even in patients with severe airflow obstruction. While F(E)NO has been suggested as a readily determined biomarker that can aid in the diagnosis and management of asthma, its potential role in pathophysiology of non-pulmonary diseases is less clear and therefore remains to be established. The purpose of the present review is to highlight the current literature investigating the use of F(E)NO in the diagnosis and management of non-pulmonary diseases.
Collapse
Affiliation(s)
- Caterina Bucca
- Department of Clinical Pathophysiology, University of Turin, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Beall CM, Laskowski D, Erzurum SC. Nitric oxide in adaptation to altitude. Free Radic Biol Med 2012; 52:1123-34. [PMID: 22300645 PMCID: PMC3295887 DOI: 10.1016/j.freeradbiomed.2011.12.028] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/29/2011] [Accepted: 12/29/2011] [Indexed: 11/20/2022]
Abstract
This review summarizes published information on the levels of nitric oxide gas (NO) in the lungs and NO-derived liquid-phase molecules in the acclimatization of visitors newly arrived at altitudes of 2500 m or more and adaptation of populations whose ancestors arrived thousands of years ago. Studies of acutely exposed visitors to high altitude focus on the first 24-48 h with just a few extending to days or weeks. Among healthy visitors, NO levels in the lung, plasma, and/or red blood cells fell within 2h, but then returned toward baseline or slightly higher by 48 h and increased above baseline by 5 days. Among visitors ill with high-altitude pulmonary edema at the time of the study or in the past, NO levels were lower than those of their healthy counterparts. As for highland populations, Tibetans had NO levels in the lung, plasma, and red blood cells that were at least double and in some cases orders of magnitude greater than other populations regardless of altitude. Red blood cell-associated nitrogen oxides were more than 200 times higher. Other highland populations had generally higher levels although not to the degree shown by Tibetans. Overall, responses of those acclimatized and those presumed to be adapted are in the same direction, although the Tibetans have much larger responses. Missing are long-term data on lowlanders at altitude showing how similar they become to the Tibetan phenotype. Also missing are data on Tibetans at low altitude to see the extent to which their phenotype is a response to the immediate environment or expressed constitutively. The mechanisms causing the visitors' and the Tibetans' high levels of NO and NO-derived molecules at altitude remain unknown. Limited data suggest processes including hypoxic upregulation of NO synthase gene expression, hemoglobin-NO reactions, and genetic variation. Gains in understanding will require integrating appropriate methods and measurement techniques with indicators of adaptive function under hypoxic stress.
Collapse
Affiliation(s)
- Cynthia M Beall
- Case Western Reserve University, Department of Anthropology, 10900 Euclid Avenue, Cleveland, OH 44106, USA, telephone 216 368 2277, telephone during academic year 2011-2012: 216 509 5021, fax 216 368 5334
| | - Daniel Laskowski
- Cleveland Clinic, Department of Pathobiology, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Serpil C. Erzurum
- Cleveland Clinic, Department of Pathobiology, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
18
|
Exhaled nitric oxide is associated with acute mountain sickness susceptibility during exposure to normobaric hypoxia. Respir Physiol Neurobiol 2012; 180:40-4. [DOI: 10.1016/j.resp.2011.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 09/29/2011] [Accepted: 10/11/2011] [Indexed: 12/16/2022]
|
19
|
Sightings edited by John W. Severinghaus. High Alt Med Biol 2011. [DOI: 10.1089/ham.2011.1233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|