1
|
Cruz AF, Herrmann J, Ramcharran H, Kollisch-Singule M, Tawhai MH, Bates JHT, Nieman GF, Kaczka DW. Sustained vs. Intratidal Recruitment in the Injured Lung During Airway Pressure Release Ventilation: A Computational Modeling Perspective. Mil Med 2023; 188:141-148. [PMID: 37948236 DOI: 10.1093/milmed/usad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION During mechanical ventilation, cyclic recruitment and derecruitment (R/D) of alveoli result in focal points of heterogeneous stress throughout the lung. In the acutely injured lung, the rates at which alveoli can be recruited or derecruited may also be altered, requiring longer times at higher pressure levels to be recruited during inspiration, but shorter times at lower pressure levels to minimize collapse during exhalation. In this study, we used a computational model to simulate the effects of airway pressure release ventilation (APRV) on acinar recruitment, with varying inspiratory pressure levels and durations of exhalation. MATERIALS AND METHODS The computational model consisted of a ventilator pressure source, a distensible breathing circuit, an endotracheal tube, and a porcine lung consisting of recruited and derecruited zones, as well as a transitional zone capable of intratidal R/D. Lung injury was simulated by modifying each acinus with an inflation-dependent surface tension. APRV was simulated for an inhalation duration (Thigh) of 4.0 seconds, inspiratory pressures (Phigh) of 28 and 40 cmH2O, and exhalation durations (Tlow) ranging from 0.2 to 1.5 seconds. RESULTS Both sustained acinar recruitment and intratidal R/D within the subtree were consistently higher for Phigh of 40 cmH2O vs. 28 cmH2O, regardless of Tlow. Increasing Tlow was associated with decreasing sustained acinar recruitment, but increasing intratidal R/D, within the subtree. Increasing Tlow was associated with decreasing elastance of both the total respiratory system and transitional subtree of the model. CONCLUSIONS Our computational model demonstrates the confounding effects of cyclic R/D, sustained recruitment, and parenchymal strain stiffening on estimates of total lung elastance during APRV. Increasing inspiratory pressures leads to not only more sustained recruitment of unstable acini but also more intratidal R/D. Our model indicates that higher inspiratory pressures should be used in conjunction with shorter exhalation times, to avoid increasing intratidal R/D.
Collapse
Affiliation(s)
- Andrea F Cruz
- Department of Anesthesia, University of Iowa, Iowa City, IA 52242, USA
| | - Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Harry Ramcharran
- Department of Surgery, SUNY Upstate Medical Center, Syracuse, NY 13210, USA
| | | | - Merryn H Tawhai
- Department of Bioengineering, University of Auckland, Auckland 1124, New Zealand
| | - Jason H T Bates
- Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical Center, Syracuse, NY 13210, USA
| | - David W Kaczka
- Department of Anesthesia, University of Iowa, Iowa City, IA 52242, USA
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Cruz AF, Herrmann J, Carvalho CRR, Kaczka DW. A comparison of endotracheal tube compensation techniques for the measurement of respiratory mechanical impedance at low frequencies. J Clin Monit Comput 2022; 36:1461-1477. [PMID: 34910285 PMCID: PMC9198108 DOI: 10.1007/s10877-021-00788-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022]
Abstract
Measurement of respiratory impedance ([Formula: see text]) in intubated patients requires accurate compensation for pressure losses across the endotracheal tube (ETT). In this study, we compared time-domain (TD), frequency-domain (FD) and combined time-/frequency-domain (FT) methods for ETT compensation. We measured total impedance ([Formula: see text]) of a test lung in series with three different ETT sizes, as well as in three intubated porcine subjects. Pressure measurement at the distal end of the ETT was used to determine the true [Formula: see text]. For TD compensation, pressure distal to the ETT was obtained based on its resistive and inertial properties, and the corresponding [Formula: see text] was estimated. For FD compensation, impedance of the isolated ETT was obtained from oscillatory flow and pressure waveforms, and then subtracted from [Formula: see text]. For TF compensation, the nonlinear resistive properties of the ETT were subtracted from the proximal pressure measurement, from which the linear resistive and inertial ETT properties were removed in the frequency-domain to obtain [Formula: see text]. The relative root mean square error between the actual and estimated [Formula: see text] ([Formula: see text]) showed that TD compensation yielded the least accurate estimates of [Formula: see text] for the in vitro experiments, with small deviations observed at higher frequencies. The FD and TF compensations yielded estimates of [Formula: see text] with similar accuracies. For the porcine subjects, no significant differences were observed in [Formula: see text] across compensation methods. FD and TF compensation of the ETT may allow for accurate oscillometric estimates of [Formula: see text] in intubated subjects, while avoiding the difficulties associated with direct tracheal pressure measurement.
Collapse
Affiliation(s)
- Andrea F Cruz
- Laboratorio de Pneumologia LIM-09, Disciplina de Pneumologia, Heart Institute (Incor), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Department of Anesthesia, University of Iowa, Iowa City, IA, USA
| | - Jacob Herrmann
- Department of Anesthesia, University of Iowa, Iowa City, IA, USA
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Carlos R R Carvalho
- Laboratorio de Pneumologia LIM-09, Disciplina de Pneumologia, Heart Institute (Incor), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - David W Kaczka
- Department of Anesthesia, University of Iowa, Iowa City, IA, USA.
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.
- Department of Radiology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Clark AR, Burrowes KS, Tawhai MH. Integrative Computational Models of Lung Structure-Function Interactions. Compr Physiol 2021; 11:1501-1530. [PMID: 33577123 DOI: 10.1002/cphy.c200011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Anatomically based integrative models of the lung and their interaction with other key components of the respiratory system provide unique capabilities for investigating both normal and abnormal lung function. There is substantial regional variability in both structure and function within the normal lung, yet it remains capable of relatively efficient gas exchange by providing close matching of air delivery (ventilation) and blood delivery (perfusion) to regions of gas exchange tissue from the scale of the whole organ to the smallest continuous gas exchange units. This is despite remarkably different mechanisms of air and blood delivery, different fluid properties, and unique scale-dependent anatomical structures through which the blood and air are transported. This inherent heterogeneity can be exacerbated in the presence of disease or when the body is under stress. Current computational power and data availability allow for the construction of sophisticated data-driven integrative models that can mimic respiratory system structure, function, and response to intervention. Computational models do not have the same technical and ethical issues that can limit experimental studies and biomedical imaging, and if they are solidly grounded in physiology and physics they facilitate investigation of the underlying interaction between mechanisms that determine respiratory function and dysfunction, and to estimate otherwise difficult-to-access measures. © 2021 American Physiological Society. Compr Physiol 11:1501-1530, 2021.
Collapse
Affiliation(s)
- Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kelly S Burrowes
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
High-Frequency Oscillatory Ventilation and Ventilator-Induced Lung Injury: Size Does Matter. Crit Care Med 2020; 48:e66-e73. [PMID: 31634232 DOI: 10.1097/ccm.0000000000004073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The theoretical basis for minimizing tidal volume during high-frequency oscillatory ventilation may not be appropriate when lung tissue stretch occurs heterogeneously and/or rapidly. The objective of this study was to assess the extent to which increased ventilation heterogeneity may contribute to ventilator-induced lung injury during high-frequency oscillatory ventilation in adults compared with neonates on the basis of lung size, using a computational model of human lungs. DESIGN Computational modeling study. SETTING Research laboratory. SUBJECTS High-fidelity, 3D computational models of human lungs, scaled to various sizes representative of neonates, children, and adults, with varying injury severity. All models were generated from one thoracic CT image of a healthy adult male. INTERVENTIONS Oscillatory ventilation was simulated in each lung model at frequencies ranging from 0.2 to 40 Hz. Sinusoidal flow oscillations were delivered at the airway opening of each model and distributed through the lungs according to regional parenchymal mechanics. MEASUREMENTS AND MAIN RESULTS Acinar flow heterogeneity was assessed by the coefficient of variation in flow magnitudes across all acini in each model. High-frequency oscillatory ventilation simulations demonstrated increasing heterogeneity of regional parenchymal flow with increasing lung size, with decreasing ratio of deadspace to total acinar volume, and with increasing frequency above lung corner frequency and resonant frequency. Potential for resonant amplification was greatest in injured adult-sized lungs with higher regional quality factors indicating the presence of underdamped lung regions. CONCLUSIONS The potential for ventilator-induced lung injury during high-frequency oscillatory ventilation is enhanced at frequencies above lung corner frequency or resonant frequency despite reduced tidal volumes, especially in adults, due to regional amplification of heterogeneous flow. Measurements of corner frequency and resonant frequency should be considered during high-frequency oscillatory ventilation management.
Collapse
|
5
|
Smith BJ, Roy GS, Cleveland A, Mattson C, Okamura K, Charlebois CM, Hamlington KL, Novotny MV, Knudsen L, Ochs M, Hite RD, Bates JHT. Three Alveolar Phenotypes Govern Lung Function in Murine Ventilator-Induced Lung Injury. Front Physiol 2020; 11:660. [PMID: 32695013 PMCID: PMC7338482 DOI: 10.3389/fphys.2020.00660] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/25/2020] [Indexed: 01/03/2023] Open
Abstract
Mechanical ventilation is an essential lifesaving therapy in acute respiratory distress syndrome (ARDS) that may cause ventilator-induced lung injury (VILI) through a positive feedback between altered alveolar mechanics, edema, surfactant inactivation, and injury. Although the biophysical forces that cause VILI are well documented, a knowledge gap remains in the quantitative link between altered parenchymal structure (namely alveolar derecruitment and flooding), pulmonary function, and VILI. This information is essential to developing diagnostic criteria and ventilation strategies to reduce VILI and improve ARDS survival. To address this unmet need, we mechanically ventilated mice to cause VILI. Lung structure was measured at three air inflation pressures using design-based stereology, and the mechanical function of the pulmonary system was measured with the forced oscillation technique. Assessment of the pulmonary surfactant included total surfactant, distribution of phospholipid aggregates, and surface tension lowering activity. VILI-induced changes in the surfactant included reduced surface tension lowering activity in the typically functional fraction of large phospholipid aggregates and a significant increase in the pool of surface-inactive small phospholipid aggregates. The dominant alterations in lung structure at low airway pressures were alveolar collapse and flooding. At higher airway pressures, alveolar collapse was mitigated and the flooded alveoli remained filled with proteinaceous edema. The loss of ventilated alveoli resulted in decreased alveolar gas volume and gas-exchange surface area. These data characterize three alveolar phenotypes in murine VILI: flooded and non-recruitable alveoli, unstable alveoli that derecruit at airway pressures below 5 cmH2O, and alveoli with relatively normal structure and function. The fraction of alveoli with each phenotype is reflected in the proportional changes in pulmonary system elastance at positive end expiratory pressures of 0, 3, and 6 cmH2O.
Collapse
Affiliation(s)
- Bradford J Smith
- Department of Bioengineering, College of Engineering, Design & Computing, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gregory S Roy
- Vermont Lung Center, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Alyx Cleveland
- Vermont Lung Center, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Courtney Mattson
- Department of Bioengineering, College of Engineering, Design & Computing, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, United States
| | - Kayo Okamura
- Department of Bioengineering, College of Engineering, Design & Computing, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, United States
| | - Chantel M Charlebois
- Vermont Lung Center, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Katharine L Hamlington
- Department of Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael V Novotny
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hanover, Germany
| | - Matthias Ochs
- Institute of Functional Anatomy, Charité Medical University of Berlin, Berlin, Germany
| | - R Duncan Hite
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jason H T Bates
- Vermont Lung Center, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
6
|
Saatci E, Saatci E. State-space analysis of fractional-order respiratory system models. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Herrmann J, Tawhai MH, Kaczka DW. Strain, strain rate, and mechanical power: An optimization comparison for oscillatory ventilation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3238. [PMID: 31318162 PMCID: PMC6785367 DOI: 10.1002/cnm.3238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/07/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to assess the potential for optimization of mechanical ventilator waveforms using multiple frequencies of oscillatory flow delivered simultaneously to minimize the risk of ventilator-induced lung injury (VILI) associated with regional strain, strain rate, and mechanical power. Optimization was performed using simulations of distributed oscillatory flow and gas transport in a computational model of anatomically derived branching airway segments and viscoelastic terminal acini under healthy and injured conditions. Objective functions defined by regional strain or strain rate were minimized by single-frequency ventilation waveforms using the highest or lowest frequencies available, respectively. However, a mechanical power objective function was minimized by a combination of multiple frequencies delivered simultaneously. This simulation study thus demonstrates the potential for multifrequency oscillatory ventilation to reduce regional mechanical power in comparison to single-frequency ventilation, and thereby reduce the risk of VILI.
Collapse
Affiliation(s)
- Jacob Herrmann
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, USA
| | - Merryn H. Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David W. Kaczka
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, USA
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Herrmann J, Tawhai MH, Kaczka DW. Computational Modeling of Primary Blast Lung Injury: Implications for Ventilator Management. Mil Med 2019; 184:273-281. [PMID: 30901433 DOI: 10.1093/milmed/usy305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/27/2018] [Accepted: 10/18/2018] [Indexed: 01/02/2023] Open
Abstract
Primary blast lung injury (PBLI) caused by exposure to high-intensity pressure waves is associated with parenchymal tissue injury and severe ventilation-perfusion mismatch. Although supportive ventilation is often required in patients with PBLI, maldistribution of gas flow in mechanically heterogeneous lungs may lead to further injury due to increased parenchymal strain and strain rate, which are difficult to predict in vivo. In this study, we developed a computational lung model with mechanical properties consistent with healthy and PBLI conditions. PBLI conditions were simulated with bilateral derecruitment and increased perihilar tissue stiffness. As a result of these tissue abnormalities, airway flow was heterogeneously distributed in the model under PBLI conditions, during both conventional mechanical ventilation (CMV) and high-frequency oscillatory ventilation. PBLI conditions resulted in over three-fold higher parenchymal strains compared to the healthy condition during CMV, with flow distributed according to regional tissue stiffness. During high-frequency oscillatory ventilation, flow distribution became increasingly heterogeneous and frequency-dependent. We conclude that the distribution and rate of parenchymal distension during mechanical ventilation depend on PBLI severity as well as ventilatory modality. These simulations may allow realistic assessment of the risks associated with ventilator-induced lung injury following PBLI, and facilitate the development of alternative lung-protective ventilation modalities.
Collapse
Affiliation(s)
- Jacob Herrmann
- Department of Anesthesia, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA.,Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds St, Grafton, Auckland 1010, New Zealand
| | - David W Kaczka
- Department of Anesthesia, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA.,Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA.,Department of Radiology, University of Iowa Hospitals and Clinics, 3970 John Pappajohn Pavilion, 200 Hawkins Dr, Iowa City, IA
| |
Collapse
|
9
|
Südy R, Fodor GH, Dos Santos Rocha A, Schranc Á, Tolnai J, Habre W, Peták F. Different contributions from lungs and chest wall to respiratory mechanics in mice, rats, and rabbits. J Appl Physiol (1985) 2019; 127:198-204. [PMID: 31161880 DOI: 10.1152/japplphysiol.00048.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Changes in lung mechanics are frequently inferred from intact-chest measures of total respiratory system mechanics without consideration of the chest wall contribution. The participation of lungs and chest wall in respiratory mechanics has not been evaluated systematically in small animals commonly used in respiratory research. Thus, we compared these contributions in intact-chest mice, rats, and rabbits and further characterized the influence of positive end-expiratory pressure (PEEP). Forced oscillation technique was applied to anesthetized mechanically ventilated healthy animals to obtain total respiratory system impedance (Zrs) at 0, 3, and 6 cmH2O PEEP levels. Esophageal pressure was measured by a catheter-tip micromanometer to separate Zrs into pulmonary (ZL) and chest wall (Zcw) components. A model containing a frequency-independent Newtonian resistance (RN), inertance, and a constant-phase tissue damping (G) and elastance (H) was fitted to Zrs, ZL, and Zcw spectra. The contribution of Zcw to RN was negligible in all species and PEEP levels studied. However, the participation of Zcw in G and H was significant in all species and increased significantly with increasing PEEP and animal size (rabbit > rat > mice). Even in mice, the chest wall contribution to G and H was still considerable, reaching 47.0 ± 4.0(SE)% and 32.9 ± 5.9% for G and H, respectively. These findings demonstrate that airway parameters can be assessed from respiratory system mechanical measurements. However, the contribution from the chest wall should be considered when intact-chest measurements are used to estimate lung parenchymal mechanics in small laboratory models (even in mice), particularly at elevated PEEP levels. NEW & NOTEWORTHY In species commonly used in respiratory research (rabbits, rats, mice), esophageal pressure-based estimates revealed negligible contribution from the chest wall to the Newtonian resistance. Conversely, chest wall participation in the viscoelastic tissue mechanical parameters increased with body size (rabbit > rat > mice) and positive end-expiratory pressure, with contribution varying between 30 and 50%, even in mice. These findings demonstrate the potential biasing effects of the chest wall when lung tissue mechanics are inferred from intact-chest measurements in small laboratory animals.
Collapse
Affiliation(s)
- Roberta Südy
- Unit for Anesthesiological Investigations, Department of Acute Medicine, University of Geneva , Geneva , Switzerland.,Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Gergely H Fodor
- Unit for Anesthesiological Investigations, Department of Acute Medicine, University of Geneva , Geneva , Switzerland
| | - André Dos Santos Rocha
- Unit for Anesthesiological Investigations, Department of Acute Medicine, University of Geneva , Geneva , Switzerland
| | - Álmos Schranc
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - József Tolnai
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Walid Habre
- Unit for Anesthesiological Investigations, Department of Acute Medicine, University of Geneva , Geneva , Switzerland
| | - Ferenc Peták
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| |
Collapse
|
10
|
Barnes T, Enk D. Ventilation for low dissipated energy achieved using flow control during both inspiration and expiration. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2019. [DOI: 10.1016/j.tacc.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Mondoñedo JR, McNeil JS, Herrmann J, Simon BA, Kaczka DW. Targeted Versus Continuous Delivery of Volatile Anesthetics During Cholinergic Bronchoconstriction. JOURNAL OF ENGINEERING AND SCIENCE IN MEDICAL DIAGNOSTICS AND THERAPY 2018; 1:031003. [PMID: 31106293 PMCID: PMC6516463 DOI: 10.1115/1.4040001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/13/2018] [Indexed: 11/08/2022]
Abstract
Volatile anesthetics have been shown to reduce lung resistance through dilation of constricted airways. In this study, we hypothesized that that diffusion of inhaled anesthetics from airway lumen to smooth muscle would yield significant bronchodilation in vivo, and systemic recirculation would not be necessary to reduce lung resistance (RL ) and elastance (EL ) during sustained bronchoconstriction. To test this hypothesis, we designed a delivery system for precise timing of inhaled volatile anesthetics during the course of a positive pressure breath. We compared changes in RL , EL , and anatomic dead space (VD ) in canines (N=5) during pharmacologically-induced bronchoconstriction with intravenous methacholine, and following treatments with: 1) targeted anesthetic delivery to VD ; and 2) continuous anesthetic delivery throughout inspiration. Both sevoflurane and isoflurane were used during each delivery regimen. Compared to continuous delivery, targeted delivery resulted in significantly lower doses of delivered anesthetic and decreased end-expiratory concentrations. However, we did not detect significant reductions in RL or EL for either anesthetic delivery regimen. This lack of response may have resulted from an insufficient dose of the anesthetic to cause bronchodilation, or from the preferential distribution of air flow with inhaled anesthetic delivery to less constricted, unobstructed regions of the lung, thereby enhancing airway heterogeneity and increasing apparent RL and EL .
Collapse
Affiliation(s)
- Jarred R. Mondoñedo
- Department of Biomedical Engineering,
School of Medicine,
Boston University,
Boston, MA 02215
| | - John S. McNeil
- Department of Anesthesiology,
University of Virginia,
Charlottesville, VA 22903
| | - Jacob Herrmann
- Department of Anesthesiology;Department of Biomedical Engineering,
University of Iowa,
Iowa City, IA 52242
| | - Brett A. Simon
- Department of Anesthesiology
and Critical Care Medicine;
Department of Surgery,
Memorial Sloan Kettering Cancer Center,
New York, NY 10065
| | - David W. Kaczka
- Department of Anesthesiology, Biomedical
Engineering, and Radiology;
Department of Biomedical Engineering;
Department of Radiology,
University of Iowa Hospitals and Clinics,
Iowa City, IA 52242
e-mail:
| |
Collapse
|
12
|
Herrmann J, Tawhai MH, Kaczka DW. Parenchymal strain heterogeneity during oscillatory ventilation: why two frequencies are better than one. J Appl Physiol (1985) 2017; 124:653-663. [PMID: 29051332 DOI: 10.1152/japplphysiol.00615.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High-frequency oscillatory ventilation (HFOV) relies on low tidal volumes cycled at supraphysiological rates, producing fundamentally different mechanisms for gas transport and exchange compared with conventional mechanical ventilation. Despite the appeal of using low tidal volumes to mitigate the risks of ventilator-induced lung injury, HFOV has not improved mortality for most clinical indications. This may be due to nonuniform and frequency-dependent distribution of flow throughout the lung. The goal of this study was to compare parenchymal strain heterogeneity during eucapnic HFOV when using oscillatory waveforms that consisted of either a single discrete frequency or two simultaneous frequencies. We utilized a three-dimensional, anatomically structured canine lung model for simulating frequency-dependent ventilation distribution. Gas transport was simulated via direct alveolar ventilation, advective mixing at bifurcations, turbulent and oscillatory dispersion, and molecular diffusion. Volume amplitudes at each oscillatory frequency were iteratively optimized to attain eucapnia. Ventilation using single-frequency HFOV demonstrated increasing heterogeneity of acinar flow and CO2 elimination with frequency for frequencies greater than the resonant frequency. For certain pairs of frequencies, a linear combination of the two corresponding ventilation distributions yielded reduced acinar strain heterogeneity compared with either frequency alone. Our model demonstrates that superposition of two simultaneous oscillatory frequencies can achieve more uniform ventilation distribution, and therefore lessen the potential for ventilator-induced lung injury, compared with traditional single-frequency HFOV. NEW & NOTEWORTHY In this study, we simulated oscillatory ventilation with multiple simultaneous frequencies using a computational lung model that includes distributed flow and gas transport. A mechanism of benefit was identified by which ventilation with two simultaneous frequencies results in reduced acinar strain heterogeneity compared with either frequency alone. This finding suggests the possibility of tuning the spectral content of ventilator waveforms according to patient-specific mechanical heterogeneity.
Collapse
Affiliation(s)
- Jacob Herrmann
- Department of Anesthesia, University of Iowa , Iowa City, Iowa.,Department of Biomedical Engineering, University of Iowa , Iowa City, Iowa
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| | - David W Kaczka
- Department of Anesthesia, University of Iowa , Iowa City, Iowa.,Department of Biomedical Engineering, University of Iowa , Iowa City, Iowa.,Department of Radiology, University of Iowa , Iowa City, Iowa
| |
Collapse
|
13
|
Amini R, Herrmann J, Kaczka DW. Intratidal Overdistention and Derecruitment in the Injured Lung: A Simulation Study. IEEE Trans Biomed Eng 2016; 64:681-689. [PMID: 27244715 DOI: 10.1109/tbme.2016.2572678] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
GOAL Ventilated patients with the acute respiratory distress syndrome (ARDS) are predisposed to cyclic parenchymal overdistention and derecruitment, which may worsen existing injury. We hypothesized that intratidal variations in global mechanics, as assessed at the airway opening, would reflect such distributed processes. METHODS We developed a computational lung model for determining local instantaneous pressure distributions and mechanical impedances continuously during a breath. Based on these distributions and previous literature, we simulated the within-breath variability of airway segment dimensions, parenchymal viscoelasticity, and acinar recruitment in an injured canine lung for tidal volumes( VT ) of 10, 15, and 20 mL·kg-1 and positive end-expiratory pressures (PEEP) of 5, 10, and 15 cm H2O. Acini were allowed to transition between recruited and derecruited states when exposed to stochastically determined critical opening and closing pressures, respectively. RESULTS For conditions of low VT and low PEEP, we observed small intratidal variations in global resistance and elastance, with a small number of cyclically recruited acini. However, with higher VT and PEEP, larger variations in resistance and elastance were observed, and the majority of acini remained open throughout the breath. Changes in intratidal resistance, elastance, and impedance followed well-defined parabolic trajectories with tracheal pressure, achieving minima near 12 to 16 cm H2O. CONCLUSION Intratidal variations in lung mechanics may allow for optimization of ventilator settings in patients with ARDS, by balancing lung recruitment against parenchymal overdistention. SIGNIFICANCE Titration of airway pressures based on variations in intratidal mechanics may mitigate processes associated with injurious ventilation.
Collapse
|
14
|
Amini R, Kaczka DW. Impact of ventilation frequency and parenchymal stiffness on flow and pressure distribution in a canine lung model. Ann Biomed Eng 2013; 41:2699-711. [PMID: 23872936 DOI: 10.1007/s10439-013-0866-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 07/08/2013] [Indexed: 11/25/2022]
Abstract
To determine the impact of ventilation frequency, lung volume, and parenchymal stiffness on ventilation distribution, we developed an anatomically-based computational model of the canine lung. Each lobe of the model consists of an asymmetric branching airway network subtended by terminal, viscoelastic acinar units. The model allows for empiric dependencies of airway segment dimensions and parenchymal stiffness on transpulmonary pressure. We simulated the effects of lung volume and parenchymal recoil on global lung impedance and ventilation distribution from 0.1 to 100 Hz, with mean transpulmonary pressures from 5 to 25 cm H2O. With increasing lung volume, the distribution of acinar flows narrowed and became more synchronous for frequencies below resonance. At higher frequencies, large variations in acinar flow were observed. Maximum acinar flow occurred at first antiresonance frequency, where lung impedance achieved a local maximum. The distribution of acinar pressures became very heterogeneous and amplified relative to tracheal pressure at the resonant frequency. These data demonstrate the important interaction between frequency and lung tissue stiffness on the distribution of acinar flows and pressures. These simulations provide useful information for the optimization of frequency, lung volume, and mean airway pressure during conventional ventilation or high frequency oscillation (HFOV). Moreover our model indicates that an optimal HFOV bandwidth exists between the resonant and antiresonant frequencies, for which interregional gas mixing is maximized.
Collapse
|
15
|
Kaczka DW, Mitzner W, Brown RH. Effects of lung inflation on airway heterogeneity during histaminergic bronchoconstriction. J Appl Physiol (1985) 2013; 115:626-33. [PMID: 23813528 DOI: 10.1152/japplphysiol.00476.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung inflation has been shown to dilate airways by altering the mechanical equilibrium between opposing airway and parenchymal forces. However, it is not known how heterogeneously such dilation occurs throughout the airway tree. In six anesthetized dogs, we measured the diameters of five to six central airway segments using high-resolution computed tomography, along with respiratory input impedance (Zrs) during generalized aerosol histamine challenge, and local histamine challenge in which the agonist was instilled directly onto the epithelia of the imaged central airways. Airway diameters and Zrs were measured at 12 and 25 cmH2O. The Zrs spectra were fitted with a model that incorporated continuous distributions of airway resistances. Airway heterogeneity was quantified using the coefficient of variation for predefined airway distribution functions. Significant reductions in average central airway diameter were observed at 12 cmH2O for both aerosolized and local challenges, along with significant increases upon inflation to 25 cmH2O. No significant differences were observed for the coefficient of variation of airway diameters under any condition. Significant increases in effective airway resistance as measured by Zrs were observed only for the aerosolized challenge at 12 cmH2O, which was completely reversed upon inflation. We conclude that the lung periphery may be the most dominant contributor to increases in airway resistance and tissue elastance during bronchoconstriction induced by aerosolized histamine. However, isolated constriction of only a few central airway segments may also affect tissue stiffness via interdependence with their surrounding parenchyma.
Collapse
|