1
|
Andrisani G, Andrisani G. Sleep apnea pathophysiology. Sleep Breath 2023; 27:2111-2122. [PMID: 36976413 PMCID: PMC10656321 DOI: 10.1007/s11325-023-02783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE The purpose of this study is to examine the pathophysiology underlying sleep apnea (SA). BACKGROUND We consider several critical features of SA including the roles played by the ascending reticular activating system (ARAS) that controls vegetative functions and electroencephalographic findings associated with both SA and normal sleep. We evaluate this knowledge together with our current understanding of the anatomy, histology, and physiology of the mesencephalic trigeminal nucleus (MTN) and mechanisms that contribute directly to normal and disordered sleep. MTN neurons express γ-aminobutyric acid (GABA) receptors which activate them (make chlorine come out of the cells) and that can be activated by GABA released from the hypothalamic preoptic area. METHOD We reviewed the published literature focused on sleep apnea (SA) reported in Google Scholar, Scopus, and PubMed databases. RESULTS The MTN neurons respond to the hypothalamic GABA release by releasing glutamate that activates neurons in the ARAS. Based on these findings, we conclude that a dysfunctional MTN may be incapable of activating neurons in the ARAS, notably those in the parabrachial nucleus, and that this will ultimately lead to SA. Despite its name, obstructive sleep apnea (OSA) is not caused by an airway obstruction that prevents breathing. CONCLUSIONS While obstruction may contribute to the overall pathology, the primary factor involved in this scenario is the lack of neurotransmitters.
Collapse
Affiliation(s)
- Giovanni Andrisani
- Matera Via Della Croce 47, 75100, Matera, Italy.
- Università Degli Studi Di Bari, Aldo Moro, Bari, Italy.
| | - Giorgia Andrisani
- Ezelsveldlaan 2, 2611 rv, Delft, Netherlands
- Universidad Alfonso X, El Sabio Villanueva de La Canada, Madrid, Spain
| |
Collapse
|
2
|
Effect of Venlafaxine on Apnea-Hypopnea Index in Patients With Sleep Apnea: A Randomized, Double-Blind Crossover Study. Chest 2020; 158:765-775. [PMID: 32278781 DOI: 10.1016/j.chest.2020.02.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/11/2020] [Accepted: 02/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND One of the key mechanisms underlying OSA is reduced pharyngeal muscle tone during sleep. Data suggest that pharmacologic augmentation of central serotonergic/adrenergic tone increases pharyngeal muscle tone. RESEARCH QUESTION We hypothesized that venlafaxine, a serotonin-norepinephrine reuptake inhibitor, would improve OSA severity. STUDY DESIGN AND METHODS In this mechanistic, randomized, double-blind, placebo-controlled crossover trial, 20 patients with OSA underwent two overnight polysomnograms ≥ 4 days apart, receiving either 50 mg of immediate-release venlafaxine or placebo before bedtime. Primary outcomes were the apnea-hypopnea index (AHI) and peripheral oxygen saturation (Spo2) nadir, and secondary outcomes included sleep parameters and pathophysiologic traits with a view toward understanding the impact of venlafaxine on mechanisms underlying OSA. RESULTS Overall, there was no significant difference between venlafaxine and placebo regarding AHI (mean reduction, -5.6 events/h [95% CI, -12.0 to 0.9]; P = .09) or Spo2 nadir (median increase, +1.0% [-0.5 to 5]; P = .11). Venlafaxine reduced total sleep time, sleep efficiency, and rapid eye movement (REM) sleep, while increasing non-REM stage 1 sleep (Pall < .05). On the basis of exploratory post hoc analyses venlafaxine decreased ("improved") the ventilatory response to arousal (-30%; P = .049) and lowered ("worsened") the predicted arousal threshold (-13%; [P = .02]; ie, more arousable), with no effects on other pathophysiologic traits (Pall ≥ .3). Post hoc analyses further suggested effect modification by arousal threshold (P = .002): AHI improved by 19% in patients with a high arousal threshold (-10.9 events/h [-3.9 to -17.9]) but tended to increase in patients with a low arousal threshold (+7 events/h [-2.0 to 16]). Other predictors of response were elevated AHI and less collapsible upper airway anatomy at baseline (|r| > 0.5, P ≤ .02). INTERPRETATION In unselected patients, venlafaxine simultaneously worsened and improved various pathophysiologic traits, resulting in a zero net effect. Careful patient selection based on pathophysiologic traits, or combination therapy with drugs countering its alerting effects, may produce a more robust response. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT02714400; URL: www.clinicaltrials.gov.
Collapse
|
3
|
Ginter G, Sankari A, Eshraghi M, Obiakor H, Yarandi H, Chowdhuri S, Salloum A, Badr MS. Effect of acetazolamide on susceptibility to central sleep apnea in chronic spinal cord injury. J Appl Physiol (1985) 2020; 128:960-966. [PMID: 32078469 DOI: 10.1152/japplphysiol.00532.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is an established risk factor for central sleep apnea. Acetazolamide (ACZ), a carbonic anhydrase inhibitor, has been shown to decrease the frequency of central apnea by inducing mild metabolic acidosis. We hypothesized that ACZ would decrease the propensity to develop hypocapnic central apnea and decrease the apneic threshold. We randomized 16 participants with sleep-disordered breathing (8 SCI and 8 able-bodied controls) to receive ACZ (500 mg twice a day for 3 days) or placebo with a 1-wk washout before crossing over to the other drug arm. Study nights included polysomnography and determination of the hypocapnic apneic threshold and CO2 reserve using noninvasive ventilation. For participants with spontaneous central apnea, CO2 was administered until central apnea was abolished, and CO2 reserve was measured as the difference in end-tidal Pco2 (PETCO2) before and after. Steady-state plant gain, the response of end-tidal Pco2 to changes in ventilation, was calculated from PETCO2 and V̇e ratio during stable sleep. Controller gain, the response of ventilatory drive to changes in end-tidal Pco2, was defined as the ratio of change in V̇e between control and hypopnea to the ΔCO2 during stable non-rapid eye movement sleep. Treatment with ACZ for three days resulted in widening of the CO2 reserve (-4.0 ± 1.2 vs. -3.0 ± 0.7 mmHg for able-bodied, -3.4 ± 1.9 vs. -2.2 ± 2.2 mmHg for SCI, P < 0.0001), and a corresponding decrease in the hypocapnic apnea threshold (28.3 ± 5.2 vs. 37.1 ± 5.6 mmHg for able-bodied, 29.9 ± 5.4 vs. 34.8 ± 6.9 mmHg for SCI, P < 0.0001), respectively. ACZ significantly reduced plant gain when compared with placebo (4.1 ± 1.7 vs. 5.4 ± 1.8 mmHg/L min for able-bodied, 4.1 ± 2.0 vs. 5.1 ± 1.7 mmHg·L-1·min for SCI, P < 0.01). Acetazolamide decreased apnea-hypopnea index (28.8 ± 22.9 vs. 39.3 ± 24.1 events/h; P = 0.05), central apnea index (0.6 ± 1.5 vs. 6.3 ± 13.1 events/h; P = 0.05), and oxyhemoglobin desaturation index (7.5 ± 8.3 vs. 19.2 ± 15.2 events/h; P = 0.01) compared with placebo. Our results suggest that treatment with ACZ decreases susceptibility to hypocapnic central apnea due to decreased plant gain. Acetazolamide may attenuate central sleep apnea and improve nocturnal oxygen saturation, but its clinical utility requires further investigation in a larger sample of patients.NEW & NOTEWORTHY Tetraplegia is a risk factor for central sleep-disordered breathing (SDB) and is associated with narrow CO2 reserve (a marker of susceptibility to central apnea). Treatment with high-dose acetazolamide for 3 days decreased susceptibility to hypocapnic central apnea and reduced the frequency of central respiratory events during sleep. Acetazolamide may play a therapeutic role in alleviating central SDB in patients with cervical spinal cord injury, but larger clinical trials are needed.
Collapse
Affiliation(s)
- Geoffrey Ginter
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan.,Wayne State University, Detroit, Michigan
| | - Abdulghani Sankari
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan.,Wayne State University, Detroit, Michigan
| | - Mehdi Eshraghi
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan.,Wayne State University, Detroit, Michigan
| | - Harold Obiakor
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan.,Wayne State University, Detroit, Michigan
| | | | - Susmita Chowdhuri
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan.,Wayne State University, Detroit, Michigan
| | - Anan Salloum
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan.,Wayne State University, Detroit, Michigan
| | - M Safwan Badr
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan.,Wayne State University, Detroit, Michigan
| |
Collapse
|
4
|
Bascom AT, Sankari A, Badr MS. Spinal cord injury is associated with enhanced peripheral chemoreflex sensitivity. Physiol Rep 2017; 4:4/17/e12948. [PMID: 27597767 PMCID: PMC5027355 DOI: 10.14814/phy2.12948] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/07/2016] [Indexed: 11/24/2022] Open
Abstract
Sleep‐disordered breathing (SDB) is prevalent in individuals with chronic spinal cord injury (SCI), but the exact mechanism is unknown. The aim of this study was to investigate whether peripheral chemoreceptors activity is enhanced in individuals with chronic SCI compared to abled‐bodied control subjects using CO2 and O2 chemical tests. In protocol (1) 30 subjects (8 cervical [cSCI], 7 thoracic [tSCI] and 15 able‐bodied [AB]) were studied to determine the ventilatory response to hyperoxia during wakefulness in the supine position. In protocol (2) 24 subjects (6 cSCI, 6 tSCI, and 12 AB subjects) were studied to determine the ventilatory response to a single breath of CO2 (SBCO2). The chemoreflex response to SBCO2 was calculated as ∆VE/∆CO2 (L/min/mmHg). The ventilatory response to hyperoxia was defined as the % change in VT following acute hyperoxia compared to preceding baseline. During hyperoxia SCI subjects had a significant decrease in VT and VE (63.4 ± 21.7% and 63.1 ± 23.0% baseline, respectively, P < 0.05) compared to AB (VT: 87.1 ± 14.3% and VE: 91.38 ± 15.1% baseline, respectively, P < 0.05). There was no significant difference between cSCI and tSCI in the VT or VE during hyperoxia (P = NS). There was no significant correlation between AHI and VE% baseline (r = −0.28) in SCI and AB (n = 30). SCI participants had a greater ventilatory response to an SBCO2 than AB (0.78 ± 0.42 L/min/mmHg vs. 0.26 ± 0.10 L/min/mmHg, respectively, P < 0.05). Peripheral ventilatory chemoresponsiveness is elevated in individuals with chronic SCI compared to able‐bodied individuals.
Collapse
Affiliation(s)
- Amy T Bascom
- John D. Dingell VA Medical Center, Detroit, Michigan Department of Medicine, Wayne State University, Detroit, Michigan
| | - Abdulghani Sankari
- John D. Dingell VA Medical Center, Detroit, Michigan Department of Medicine, Wayne State University, Detroit, Michigan Cardiovascular Research Institute, Wayne State University, Detroit, Michigan
| | - M Safwan Badr
- John D. Dingell VA Medical Center, Detroit, Michigan Department of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
5
|
Bairy L, Vanderstichelen M, Jamart J, Collard E. Clonidine or remifentanil for adequate surgical conditions in patients undergoing endoscopic sinus surgery: a randomized study. PeerJ 2017; 5:e3370. [PMID: 28560111 PMCID: PMC5444371 DOI: 10.7717/peerj.3370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/01/2017] [Indexed: 11/20/2022] Open
Abstract
Background Deliberate hypotension is one way to achieve a bloodless surgical field in endoscopic sinus surgery (ESS). We compared two anaesthesia regimens to induce deliberate hypotension and attempted to determine the most efficient one. Methods Fifty-nine patients undergoing ESS were minimized into two groups. In the CLO group, patients received I.V. sufentanil 0.15 µg/kg together with I.V. clonidine 2–3 µg/kg. In the REMI group, patients received remifentanil at a rate of up to 1 µg/kg/min. Fromme scores were collected 15 min after the incision and at the end of the procedure. Mean arterial pressure readings (MAP), heart rate readings, time to eyes opening, time to extubation, pain scores, analgesic requirements, and oxygen needs were collected and compared. Results There were no significant differences in Fromme scores between the two groups. The averaged MAP from 15 min to the end of the procedure was significantly lower in the REMI group; these patients also received more ephedrine. Significantly fewer patients in the CLO group needed oxygen therapy to keep their Pulse Oximeter Oxygen Saturation within 3% of their preoperative values. Patients in this group also needed less piritramide in the recovery room, and their pain scores were lower at discharge from the recovery room. Discussion Although both anaesthesia regimens offered a similar quality of surgical field, this study suggests that clonidine had a better average safety profile. Furthermore, patients who received this regimen required fewer painkillers immediately after surgery.
Collapse
Affiliation(s)
- Laurent Bairy
- Department of Anesthesiology, CHU UcL Namur, Yvoir, Belgium
| | | | - Jacques Jamart
- Department of Biostatistics, CHU Ucl Namur, Yvoir, Belgium
| | - Edith Collard
- Department of Anesthesiology, CHU UcL Namur, Yvoir, Belgium
| |
Collapse
|
6
|
Lee WT, Huang HL, Wong LC, Weng WC, Vasylenko T, Jong YJ, Lin WS, Ho SY. Tourette Syndrome as an Independent Risk Factor for Subsequent Sleep Disorders in Children: A Nationwide Population-Based Case–Control Study. Sleep 2017; 40:2962432. [DOI: 10.1093/sleep/zsw072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2017] [Indexed: 12/17/2022] Open
|
7
|
Chowdhuri S, Badr MS. Control of Ventilation in Health and Disease. Chest 2016; 151:917-929. [PMID: 28007622 DOI: 10.1016/j.chest.2016.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022] Open
Abstract
Control of ventilation occurs at different levels of the respiratory system through a negative feedback system that allows precise regulation of levels of arterial carbon dioxide and oxygen. Mechanisms for ventilatory instability leading to sleep-disordered breathing include changes in the genesis of respiratory rhythm and chemoresponsiveness to hypoxia and hypercapnia, cerebrovascular reactivity, abnormal chest wall and airway reflexes, and sleep state oscillations. One can potentially stabilize breathing during sleep and treat sleep-disordered breathing by identifying one or more of these pathophysiological mechanisms. This review describes the current concepts in ventilatory control that pertain to breathing instability during wakefulness and sleep, delineates potential avenues for alternative therapies to stabilize breathing during sleep, and proposes recommendations for future research.
Collapse
Affiliation(s)
- Susmita Chowdhuri
- John D. Dingell VA Medical Center, Wayne State University, Detroit MI; Department of Medicine, Wayne State University, Detroit MI.
| | - M Safwan Badr
- John D. Dingell VA Medical Center, Wayne State University, Detroit MI; Department of Medicine, Wayne State University, Detroit MI
| |
Collapse
|
8
|
Biaggioni I, Calhoun DA. Sympathetic Activity, Hypertension, and The Importance of a Good Night's Sleep. Hypertension 2016; 68:1338-1339. [PMID: 27698060 DOI: 10.1161/hypertensionaha.116.08324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Italo Biaggioni
- From the Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (I.B.) and the Vascular Biology and Hypertension Program, Division of Cardiovascular Medicine, Department of Medicine, The University of Alabama at Birmingham (D.A.C.).
| | - David A Calhoun
- From the Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (I.B.) and the Vascular Biology and Hypertension Program, Division of Cardiovascular Medicine, Department of Medicine, The University of Alabama at Birmingham (D.A.C.)
| |
Collapse
|
9
|
Chalkiadis GA, Sommerfield D, Low J, Orsini F, Dowden SJ, Tay M, Penrose S, Pirpiris M, Graham HK. Comparison of lumbar epidural bupivacaine with fentanyl or clonidine for postoperative analgesia in children with cerebral palsy after single-event multilevel surgery. Dev Med Child Neurol 2016; 58:402-8. [PMID: 26400818 DOI: 10.1111/dmcn.12930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 11/30/2022]
Abstract
AIM To compare diazepam use, muscle spasm, analgesia, and side effects when clonidine or fentanyl are added to epidural bupivacaine in children with cerebral palsy after multilevel orthopaedic surgery. METHOD Fifty children were prospectively randomized to receive clonidine (n=24, mean age 10y 10mo [SD 2y 11mo]) or fentanyl (n=26, mean age 10y 11mo [SD 2y 10mo]). RESULTS There was no difference in primary outcome measures: median diazepam use (fentanyl 0, interquartile range [IQR] 0-0; clonidine 0, IQR 0-0; p=0.46), any muscle spasm (no muscle spasms in: fentanyl, 36%; clonidine, 62%; p=0.11), painful muscle spasm (fentanyl 40%; clonidine 25%; p=0.46), or pain score ≥6 (none: fentanyl 44%; clonidine 42%; p=0.29). There were differences in secondary outcome measures: no vomiting (clonidine 63%; fentanyl 20%); vomiting occurred more frequently with fentanyl (32% vomited more than three times; clonidine none; p=0.001). Fentanyl resulted in more oxygen desaturation (at least two episodes: fentanyl 20%; clonidine 0; p<0.001). Clonidine resulted in lower mean (SD) area under the curve for systolic blood pressure (fentanyl 106.5 [11.0]; clonidine 95.7mmHg [7.9]) and heart rate (fentanyl 104.9 beats per minute [13.6]; clonidine 85.3 [11.5]; p<0.001). INTERPRETATION Clonidine and fentanyl provide adequate analgesia with low rates of muscle spasm, resulting in low diazepam use. The choice of epidural additive should be based upon the most tolerable side-effect profile.
Collapse
Affiliation(s)
- George A Chalkiadis
- Department of Paediatric Anaesthesia and Pain Management, Royal Children's Hospital, Melbourne, Vic., Australia.,Murdoch Childrens Research Institute, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - David Sommerfield
- Department of Paediatric Anaesthesia and Pain Management, Royal Children's Hospital, Melbourne, Vic., Australia
| | - Janette Low
- Department of Paediatric Anaesthesia and Pain Management, Royal Children's Hospital, Melbourne, Vic., Australia
| | - Francesca Orsini
- Murdoch Childrens Research Institute, Melbourne, Vic., Australia
| | - Stephanie J Dowden
- Department of Paediatric Anaesthesia and Pain Management, Royal Children's Hospital, Melbourne, Vic., Australia
| | - Michelle Tay
- Department of Paediatric Anaesthesia and Pain Management, Royal Children's Hospital, Melbourne, Vic., Australia
| | - Sueann Penrose
- Department of Paediatric Anaesthesia and Pain Management, Royal Children's Hospital, Melbourne, Vic., Australia
| | - Marinis Pirpiris
- Murdoch Childrens Research Institute, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia.,Department of Orthopaedics, Royal Children's Hospital, Melbourne, Vic., Australia
| | - H Kerr Graham
- Murdoch Childrens Research Institute, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia.,Department of Orthopaedics, Royal Children's Hospital, Melbourne, Vic., Australia
| |
Collapse
|
10
|
Abstract
Divergent approaches to treatment of hypocapnic central sleep apnea syndromes reflect the difficulties in taming a hyperactive respiratory chemoreflex. As both sleep fragmentation and a narrow CO2 reserve or increased loop gain drive the disease, sedatives (to induce longer periods of stable non-rapid eye movement (NREM) sleep and reduce the destabilizing effects of arousals in NREM sleep) and CO2-based stabilization approaches are logical. Adaptive ventilation reduces mean hyperventilation yet can induce ventilator-patient dyssynchrony, while enhanced expiratory rebreathing space (EERS, dead space during positive pressure therapy) and CO2 manipulation directly stabilize respiratory control by moving CO2 above the apnea threshold. Carbonic anhydrase inhibition can provide further adjunctive benefits. Provent and Winx may be less likely to trigger central apneas or periodic breathing in those with a narrow CO2 reserve. An oral appliance can meaningfully reduce positive pressure requirements and thus enable treatment of complex apnea. Novel pharmacological approaches may target mediators of carotid body glomus cell excitation, such as the balance between gas neurotransmitters. In complex apnea patients, single mode therapy is not always successful, and multi-modality therapy might need to be considered. Phenotyping of sleep apnea beyond conventional scoring approaches is the key to optimal management.
Collapse
|
11
|
|
12
|
Abstract
OPINION STATEMENT Complex sleep apnea currently refers to the emergence and persistence of central apneas and hypopneas following the application of positive airway pressure therapy in patients with obstructive sleep apnea. However, this narrow definition is an "outcome" and does not capture the spectrum of pathological activation of the respiratory chemoreflex in sleep apnea. The International Classification of Sleep Disorders - 3rd edition recognizes the phenomenon of Treatment-Related Central Sleep Apnea, but the phenotype is usually evident prior to onset of therapy. The key polysomnographic characteristics of chemoreflex modulated and mediated sleep apnea are nonrapid eye movement (NREM) dominance of respiratory events, short (<30 seconds) or long (>60 seconds) cycle time with a self-similar metronomic timing, and spontaneous improvement during rapid eye movement (REM) sleep. Thus, the majority of chemoreflex effects go unrecognized due to the bias toward obstructive sleep apnea's current scoring criteria. Any treatment of apparently obstructive sleep apnea, including surgery and oral appliances, can expose chemoreflex-driven instabilities. As both sleep fragmentation and a narrow CO2 reserve or increased loop gain drive the disease, sedatives (to induce longer periods of stable NREM sleep and reduce the destabilizing effects of arousals in NREM sleep) and CO2-based stabilization approaches are logical. Adaptive ventilation reduces mean hyperventilation yet can induce ventilator-patient desynchrony, while enhanced expiratory rebreathing space (EERS, dead space during positive pressure therapy) and CO2 manipulation directly stabilize respiratory control by moving CO2 above the apnea threshold. Carbonic anhydrase inhibition can provide further adjunctive benefits. Novel pharmacological approaches may target mediators of carotid body hypoxic sensitization, such as the balance between gas neurotransmitters. In complex apnea patients, single mode therapy is unlikely to be successful, and the power of multi-modality therapy should be harnessed for optimal outcomes.
Collapse
|
13
|
Dempsey JA, Xie A, Patz DS, Wang D. Physiology in medicine: obstructive sleep apnea pathogenesis and treatment--considerations beyond airway anatomy. J Appl Physiol (1985) 2013; 116:3-12. [PMID: 24201709 DOI: 10.1152/japplphysiol.01054.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We review evidence in support of significant contributions to the pathogenesis of obstructive sleep apnea (OSA) from pathophysiological factors beyond the well-accepted importance of airway anatomy. Emphasis is placed on contributions from neurochemical control of central respiratory motor output through its effects on output stability, upper airway dilator muscle activation, and arousability. In turn, we consider the evidence demonstrating effective treatment of OSA via approaches that address each of these pathophysiologic risk factors. Finally, a case is made for combining treatments aimed at both anatomical and ventilatory control system deficiencies and for individualizing treatment to address a patient's own specific risk factors.
Collapse
Affiliation(s)
- Jerome A Dempsey
- James B. Skatrud Laboratory of Pulmonary & Sleep Medicine, Middleton Veterans Administration Hospital and Department of Population Health Sciences, University of Wisconsin-Madison, Madison Wisconsin
| | | | | | | |
Collapse
|
14
|
Wang D, Eckert DJ, Grunstein RR. Drug effects on ventilatory control and upper airway physiology related to sleep apnea. Respir Physiol Neurobiol 2013; 188:257-66. [PMID: 23685318 DOI: 10.1016/j.resp.2013.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/05/2013] [Accepted: 05/08/2013] [Indexed: 12/30/2022]
Abstract
Understanding the inter-relationship between pharmacological agents, ventilatory control, upper airway physiology and their consequent effects on sleep-disordered breathing may provide new directions for targeted drug therapy. Where available, this review focuses on human studies that contain both drug effects on sleep-disordered breathing and measures of ventilatory control or upper airway physiology. Many of the existing studies are limited in sample size or comprehensive methodology. At times, the presence of paradoxical findings highlights the complexity of drug therapy for OSA. The existing studies also highlight the importance of considering inter-individual pharmacokinetics and underlying causes of sleep apnea in interpreting drug effects on sleep-disordered breathing. Practical ways to assess an individual's ventilatory control and how it interacts with upper airway physiology is required for future targeted pharmacotherapy in sleep apnea.
Collapse
Affiliation(s)
- David Wang
- Woolcock Institute of Medical Research, University of Sydney, Glebe Point Road, Glebe, 2037 NSW, Australia; Department of Respiratory & Sleep Medicine, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia.
| | | | | |
Collapse
|