1
|
Butler AG, Bassi JK, Connelly AA, Melo MR, Allen AM, McDougall SJ. Vagal nerve stimulation dynamically alters anxiety-like behavior in rats. Brain Stimul 2025; 18:158-170. [PMID: 39892503 DOI: 10.1016/j.brs.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Electrical vagal nerve stimulation (VNS), at currents designed to target sensory, interoceptive neurons, decreases anxiety-like behavior. OBJECTIVE/HYPOTHESIS We hypothesized that different VNS current intensities would differentially alter anxiety-like behavior through the activation of distinct brainstem circuits. METHODS Electrodes were implanted to stimulate the left vagus nerve and to record diaphragm muscle and electrocardiogram activity. The VNS current required to elicit the A-fiber-mediated Hering-Breuer Reflex (HBR) was determined for each animal. Based on this threshold, animals received either sham stimulation or VNS at 1.5 (mid-intensity VNS) or 3 (higher-intensity VNS) times the threshold for HBR activation. Anxiety-like behavior was assessed using the elevated plus maze, open field test, and novelty-suppressed feeding test. Additionally, a place preference assay determined whether VNS is rewarding or aversive. Finally, a c-Fos assay was performed to evaluate VNS-driven neuronal activation within the brainstem. RESULTS Mid-intensity VNS reduced anxiety-like behavior in the elevated plus maze and open field test. Higher-intensity VNS was aversive during the place preference assay, confounding anxiety measures. Both intensities increased overall c-Fos expression in neurons within the nucleus of the solitary tract, but mid-intensity VNS specifically increased c-Fos expression in noradrenergic neurons within the nucleus of the solitary tract while decreasing it in the locus coeruleus. In contrast, higher-intensity VNS had no effect on c-Fos expression in noradrenergic neurons of either the nucleus of the solitary tract or locus coeruleus. CONCLUSION Delivery of VNS induced reproducible, current intensity-dependent, effects on anxiety-like and aversive behavior in rats.
Collapse
Affiliation(s)
- A G Butler
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - J K Bassi
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - A A Connelly
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - M R Melo
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - A M Allen
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia.
| | - S J McDougall
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Tahata R, Yamano A, Zuiki M, Ishihara Y, Akioka S. Central Hypercapnia in a Neonate With Parechovirus Infection. Cureus 2024; 16:e67455. [PMID: 39310531 PMCID: PMC11415774 DOI: 10.7759/cureus.67455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Human parechovirus infections in newborns often affect the central nervous system. It is common in children after infancy for it to be a cause of the common cold or be asymptomatic, but an infection in infancy often causes a central nervous system infection. Herein, we present the case of a nine-day-old infant who developed hypercapnia without any involvement of respiratory lesions. She showed no hypoxia or circulatory abnormalities. A high-flow nasal cannula relieved hypercapnia and consequent respiratory acidosis, suggesting that the hypercapnia was due to central ventilation failure with central nervous system infection despite no abnormalities on brain magnetic resonance imaging. Accurate diagnosis and intervention of ventilatory failure, which is a central nervous system dysfunction, is important in hypercapnia associated with parechovirus infection.
Collapse
Affiliation(s)
- Ryo Tahata
- Pediatrics, Fukui Aiiku Hospital, Fukui, JPN
| | - Akio Yamano
- Pediatrics, Fukui Aiiku Hospital, Fukui, JPN
| | - Masashi Zuiki
- Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | | | - Shinji Akioka
- Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, JPN
| |
Collapse
|
3
|
Kola G, Clifford CW, Campanaro CK, Dhingra RR, Dutschmann M, Jacono FJ, Dick TE. Peritoneal sepsis caused by Escherichia coli triggers brainstem inflammation and alters the function of sympatho-respiratory control circuits. J Neuroinflammation 2024; 21:45. [PMID: 38331902 PMCID: PMC10854125 DOI: 10.1186/s12974-024-03025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Sepsis has a high mortality rate due to multiple organ failure. However, the influence of peripheral inflammation on brainstem autonomic and respiratory circuits in sepsis is poorly understood. Our working hypothesis is that peripheral inflammation affects central autonomic circuits and consequently contributes to multiorgan failure in sepsis. METHODS In an Escherichia coli (E. coli)-fibrin clot model of peritonitis, we first recorded ventilatory patterns using plethysmography before and 24 h after fibrin clot implantation. To assess whether peritonitis was associated with brainstem neuro-inflammation, we measured cytokine and chemokine levels in Luminex assays. To determine the effect of E. coli peritonitis on brainstem function, we assessed sympatho-respiratory nerve activities at baseline and during brief (20 s) hypoxemic ischemia challenges using in situ-perfused brainstem preparations (PBPs) from sham or infected rats. PBPs lack peripheral organs and blood, but generate vascular tone and in vivo rhythmic activities in thoracic sympathetic (tSNA), phrenic and vagal nerves. RESULTS Respiratory frequency was greater (p < 0.001) at 24 h post-infection with E. coli than in the sham control. However, breath-by-breath variability and total protein in the BALF did not differ. IL-1β (p < 0.05), IL-6 (p < 0.05) and IL-17 (p < 0.04) concentrations were greater in the brainstem of infected rats. In the PBP, integrated tSNA (p < 0.05) and perfusion pressure were greater (p < 0.001), indicating a neural-mediated pathophysiological high sympathetic drive. Moreover, respiratory frequency was greater (p < 0.001) in PBPs from infected rats than from sham rats. Normalized phase durations of inspiration and expiration were greater (p < 0.009, p < 0.015, respectively), but the post-inspiratory phase (p < 0.007) and the breath-by-breath variability (p < 0.001) were less compared to sham PBPs. Hypoxemic ischemia triggered a biphasic response, respiratory augmentation followed by depression. PBPs from infected rats had weaker respiratory augmentation (p < 0.001) and depression (p < 0.001) than PBPs from sham rats. In contrast, tSNA in E. coli-treated PBPs was enhanced throughout the entire response to hypoxemic ischemia (p < 0.01), consistent with sympathetic hyperactivity. CONCLUSION We show that peripheral sepsis caused brainstem inflammation and impaired sympatho-respiratory motor control in a single day after infection. We conclude that central sympathetic hyperactivity may impact vital organ systems in sepsis.
Collapse
Affiliation(s)
- Gjinovefa Kola
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 319, Cleveland, OH, 44106-1714, USA
| | - Caitlyn W Clifford
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 319, Cleveland, OH, 44106-1714, USA
| | - Cara K Campanaro
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 319, Cleveland, OH, 44106-1714, USA
| | - Rishi R Dhingra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 319, Cleveland, OH, 44106-1714, USA
| | - Mathias Dutschmann
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 319, Cleveland, OH, 44106-1714, USA
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 319, Cleveland, OH, 44106-1714, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, 44106, USA
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 319, Cleveland, OH, 44106-1714, USA.
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Behrens R, Dutschmann M, Trewella M, Mazzone SB, Moe AAK. Regulation of vagally-evoked respiratory responses by the lateral parabrachial nucleus in the mouse. Respir Physiol Neurobiol 2023; 316:104141. [PMID: 37597796 DOI: 10.1016/j.resp.2023.104141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Vagal sensory inputs to the brainstem can alter breathing through the modulation of pontomedullary respiratory circuits. In this study, we set out to investigate the localised effects of modulating lateral parabrachial nucleus (LPB) activity on vagally-evoked changes in breathing pattern. In isoflurane-anaesthetised and instrumented mice, electrical stimulation of the vagus nerve (eVNS) produced stimulation frequency-dependent changes in diaphragm electromyograph (dEMG) activity with an evoked tachypnoea and apnoea at low and high stimulation frequencies, respectively. Muscimol microinjections into the LPB significantly attenuated eVNS-evoked respiratory rate responses. Notably, muscimol injections reaching the caudal LPB, previously unrecognised for respiratory modulation, potently modulated eVNS-evoked apnoea, whilst muscimol injections reaching the intermediate LPB selectively modulated the eVNS-evoked tachypnoea. The effects of muscimol on eVNS-evoked breathing rate changes occurred without altering basal eupneic breathing. These results highlight novel roles for the LPB in regulating vagally-evoked respiratory reflexes.
Collapse
Affiliation(s)
- Robert Behrens
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Matthew Trewella
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia.
| | - Aung Aung Kywe Moe
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia; Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
| |
Collapse
|
5
|
Musselman ED, Pelot NA, Grill WM. Validated computational models predict vagus nerve stimulation thresholds in preclinical animals and humans. J Neural Eng 2023; 20:10.1088/1741-2552/acda64. [PMID: 37257454 PMCID: PMC10324064 DOI: 10.1088/1741-2552/acda64] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
Objective.We demonstrated how automated simulations to characterize electrical nerve thresholds, a recently published open-source software for modeling stimulation of peripheral nerves, can be applied to simulate accurately nerve responses to electrical stimulation.Approach.We simulated vagus nerve stimulation (VNS) for humans, pigs, and rats. We informed our models using histology from sample-specific or representative nerves, device design features (i.e. cuff, waveform), published material and tissue conductivities, and realistic fiber models.Main results.Despite large differences in nerve size, cuff geometry, and stimulation waveform, the models predicted accurate activation thresholds across species and myelinated fiber types. However, our C fiber model thresholds overestimated thresholds across pulse widths, suggesting that improved models of unmyelinated nerve fibers are needed. Our models of human VNS yielded accurate thresholds to activate laryngeal motor fibers and captured the inter-individual variability for both acute and chronic implants. For B fibers, our small-diameter fiber model underestimated threshold and saturation for pulse widths >0.25 ms. Our models of pig VNS consistently captured the range ofin vivothresholds across all measured nerve and physiological responses (i.e. heart rate, Aδ/B fibers, Aγfibers, electromyography, and Aαfibers). In rats, our smallest diameter myelinated fibers accurately predicted fast fiber thresholds across short and intermediate pulse widths; slow unmyelinated fiber thresholds overestimated thresholds across shorter pulse widths, but there was overlap for pulse widths >0.3 ms.Significance.We elevated standards for models of peripheral nerve stimulation in populations of models across species, which enabled us to model accurately nerve responses, demonstrate that individual-specific differences in nerve morphology produce variability in neural and physiological responses, and predict mechanisms of VNS therapeutic and side effects.
Collapse
Affiliation(s)
- Eric D Musselman
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America
- Department of Neurobiology, Duke University, Durham, NC, United States of America
- Department of Neurosurgery, Duke University, Durham, NC, United States of America
| |
Collapse
|
6
|
Pranic NM, Kornbrek C, Yang C, Cleland TA, Tschida KA. Rates of ultrasonic vocalizations are more strongly related than acoustic features to non-vocal behaviors in mouse pups. Front Behav Neurosci 2022; 16:1015484. [PMID: 36600992 PMCID: PMC9805956 DOI: 10.3389/fnbeh.2022.1015484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Mouse pups produce. ultrasonic vocalizations (USVs) in response to isolation from the nest (i.e., isolation USVs). Rates and acoustic features of isolation USVs change dramatically over the first two weeks of life, and there is also substantial variability in the rates and acoustic features of isolation USVs at a given postnatal age. The factors that contribute to within age variability in isolation USVs remain largely unknown. Here, we explore the extent to which non-vocal behaviors of mouse pups relate to the within age variability in rates and acoustic features of their USVs. We recorded non-vocal behaviors of isolated C57BL/6J mouse pups at four postnatal ages (postnatal days 5, 10, 15, and 20), measured rates of isolation USV production, and applied a combination of pre-defined acoustic feature measurements and an unsupervised machine learning-based vocal analysis method to examine USV acoustic features. When we considered different categories of non-vocal behavior, our analyses revealed that mice in all postnatal age groups produce higher rates of isolation USVs during active non-vocal behaviors than when lying still. Moreover, rates of isolation USVs are correlated with the intensity (i.e., magnitude) of non-vocal body and limb movements within a given trial. In contrast, USVs produced during different categories of non-vocal behaviors and during different intensities of non-vocal movement do not differ substantially in their acoustic features. Our findings suggest that levels of behavioral arousal contribute to within age variability in rates, but not acoustic features, of mouse isolation USVs.
Collapse
|
7
|
|
8
|
Butler AG, O'Callaghan EL, Allen AM, McDougall SJ. Use of a physiological reflex to standardize vagal nerve stimulation intensity improves data reproducibility in a memory extinction assay. Brain Stimul 2021; 14:450-459. [PMID: 33647477 DOI: 10.1016/j.brs.2021.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Modulating brainstem activity, via electrical vagus nerve stimulation (VNS), influences cognitive functions, including memory. However, controlling for changes in stimulus efficacy during chronic studies, and response variability between subjects, is problematic. OBJECTIVE/HYPOTHESIS We hypothesized that recruitment of an autonomic reflex, the Hering-Breuer reflex, would provide robust confirmation of VNS efficacy. We compared this to measurement of electrode resistance over time. We also examined whether VNS modulates contextual memory extinction. METHODS Electrodes for VNS and diaphragm electromyography recording were implanted into anesthetized Sprague Dawley rats. When conscious, we measured the electrode resistance as well as the minimum VNS current required to evoke the Hering-Breuer reflex, before, and after, an inhibitory avoidance assay - a two chamber, dark/light model, where the dark compartment was paired with an aversive foot shock. The extinction of this contextual memory was assessed in sham and VNS treated rats, with VNS administered for 30 s at 1.5 times the Hering-Breuer reflex threshold during extinction memory formation. RESULTS Assessment of VNS-evoked Hering-Breuer reflex successfully identified defective electrodes. VNS accelerated extinction memory and decreased multiple physiological metrics of fear expression. We observed an inverse relationship between memory extinction and respiratory rate during the behavioural assay. Additionally, no current - response relationship between VNS and extinction memory formation was established. CONCLUSION These data demonstrate that reliable, experimental VNS studies can be produced by verifying reflex initiation as a consequence of stimulation. Further, studies could be standardised by indexing stimulator efficacy to initiation of autonomic reflexes.
Collapse
Affiliation(s)
- Andrew G Butler
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Erin L O'Callaghan
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Allen M Allen
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia.
| | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
9
|
Dutschmann M, Bautista TG, Trevizan-Baú P, Dhingra RR, Furuya WI. The pontine Kölliker-Fuse nucleus gates facial, hypoglossal, and vagal upper airway related motor activity. Respir Physiol Neurobiol 2020; 284:103563. [PMID: 33053424 DOI: 10.1016/j.resp.2020.103563] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 01/31/2023]
Abstract
The pontine Kölliker-Fuse nucleus (KFn) is a core nucleus of respiratory network that mediates the inspiratory-expiratory phase transition and gates eupneic motor discharges in the vagal and hypoglossal nerves. In the present study, we investigated whether the same KFn circuit may also gate motor activities that control the resistance of the nasal airway, which is of particular importance in rodents. To do so, we simultaneously recorded phrenic, facial, vagal and hypoglossal cranial nerve activity in an in situ perfused brainstem preparation before and after bilateral injection of the GABA-receptor agonist isoguvacine (50-70 nl, 10 mM) into the KFn (n = 11). Our results show that bilateral inhibition of the KFn triggers apneusis (prolonged inspiration) and abolished pre-inspiratory discharge of facial, vagal and hypoglossal nerves as well as post-inspiratory discharge in the vagus. We conclude that the KFn plays a critical role for the eupneic regulation of naso-pharyngeal airway patency and the potential functions of the KFn in regulating airway patency and orofacial behavior is discussed.
Collapse
Affiliation(s)
- M Dutschmann
- Florey Department of Neuroscience and Mental Health, Melbourne University, Gate 11 Royal Parade, University of Melbourne, VIC 3010, Australia.
| | - T G Bautista
- Florey Department of Neuroscience and Mental Health, Melbourne University, Gate 11 Royal Parade, University of Melbourne, VIC 3010, Australia
| | - P Trevizan-Baú
- Florey Department of Neuroscience and Mental Health, Melbourne University, Gate 11 Royal Parade, University of Melbourne, VIC 3010, Australia
| | - R R Dhingra
- Florey Department of Neuroscience and Mental Health, Melbourne University, Gate 11 Royal Parade, University of Melbourne, VIC 3010, Australia
| | - W I Furuya
- Florey Department of Neuroscience and Mental Health, Melbourne University, Gate 11 Royal Parade, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
10
|
Kirov MY, Kuzkov VV. Protective ventilation from ICU to operating room: state of art and new horizons. Korean J Anesthesiol 2020; 73:179-193. [PMID: 32008277 PMCID: PMC7280889 DOI: 10.4097/kja.19499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
The prevention of ventilator-associated lung injury (VALI) and postoperative pulmonary complications (PPC) is of paramount importance for improving outcomes both in the operating room and in the intensive care unit (ICU). Protective respiratory support includes a wide spectrum of interventions to decrease pulmonary stress-strain injuries. The motto 'low tidal volume for all' should become routine, both during major surgery and in the ICU, while application of a high positive end-expiratory pressure (PEEP) strategy and of alveolar recruitment maneuvers requires a personalized approach and requires further investigation. Patient self-inflicted lung injury is an important type of VALI, which should be diagnosed and mitigated at the early stage, during restoration of spontaneous breathing. This narrative review highlights the strategies used for protective positive pressure ventilation. The emerging concepts of damaging energy and power, as well as pathways to personalization of the respiratory settings, are discussed in detail. In the future, individualized approaches to protective ventilation may involve multiple respiratory settings extending beyond low tidal volume and PEEP, implemented in parallel with quantifying the risk of VALI and PPC.
Collapse
Affiliation(s)
- Mikhail Y. Kirov
- Department of Anesthesiology and Intensive Care Medicine, Northern State Medical University, Arkhangelsk, Russian Federation
| | - Vsevolod V. Kuzkov
- Department of Anesthesiology and Intensive Care Medicine, Northern State Medical University, Arkhangelsk, Russian Federation
| |
Collapse
|
11
|
Katayama PL, Abdala AP, Charles I, Pijacka W, Salgado HC, Gever J, Ford AP, Paton JFR. P2X3 receptor antagonism reduces the occurrence of apnoeas in newborn rats. Respir Physiol Neurobiol 2020; 277:103438. [PMID: 32259688 PMCID: PMC8208833 DOI: 10.1016/j.resp.2020.103438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022]
Abstract
Hyperreflexia of the peripheral chemoreceptors is a potential contributor of apnoeas of prematurity (AoP). Recently, it was shown that elevated P2X3 receptor expression was associated with elevated carotid body afferent sensitivity. Therefore, we tested whether P2X3 receptor antagonism would reduce AoP known to occur in newborn rats. Unrestrained whole-body plethysmography was used to record breathing and from this the frequency of apnoeas at baseline and following administration of either a P2X3 receptor antagonist - AF-454 (5 mg/kg or 10 mg/kg s.c.) or vehicle was derived. In a separate group, we tested the effects of AF-454 (10 mg/kg) on the hypoxic ventilatory response (10 % FiO2). Ten but not 5 mg/kg AF-454 reduced the frequency of AoP and improved breathing regularity significantly compared to vehicle. Neither AF-454 (both 5 and 10 mg/kg) nor vehicle affected baseline respiration. However, P2X3 receptor antagonism (10 mg/kg) powerfully blunted hypoxic ventilatory response to 10 % FiO2. These data suggest that P2X3 receptors contribute to AoP and the hypoxic ventilatory response in newborn rats but play no role in the drive to breathe at rest.
Collapse
Affiliation(s)
- Pedro Lourenço Katayama
- Bristol CardioNomics Group, School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, England, UK; Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Paula Abdala
- Bristol CardioNomics Group, School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, England, UK
| | - Ian Charles
- Bristol CardioNomics Group, School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, England, UK
| | - Wioletta Pijacka
- Bristol CardioNomics Group, School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, England, UK; Department of Cardiovascular, Renal and Metabolism, MedImmune Ltd, Granta Park, Cambridge, UK
| | - Helio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Joel Gever
- Afferent Pharmaceuticals, San Mateo, CA, USA
| | | | - Julian F R Paton
- Bristol CardioNomics Group, School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, England, UK; Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Park Road, Grafton, Auckland, 1142, New Zealand.
| |
Collapse
|
12
|
Torralva R, Janowsky A. Noradrenergic Mechanisms in Fentanyl-Mediated Rapid Death Explain Failure of Naloxone in the Opioid Crisis. J Pharmacol Exp Ther 2019; 371:453-475. [PMID: 31492824 PMCID: PMC6863461 DOI: 10.1124/jpet.119.258566] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/03/2019] [Indexed: 12/25/2022] Open
Abstract
In December 2018, the Centers for Disease Control declared fentanyl the deadliest drug in America. Opioid overdose is the single greatest cause of death in the United States adult population (ages 18-50), and fentanyl and its analogs [fentanyl/fentanyl analogs (F/FAs)] are currently involved in >50% of these deaths. Anesthesiologists in the United States were introduced to fentanyl in the early 1970s when it revolutionized surgical anesthesia by combining profound analgesia with hemodynamic stability. However, they quickly had to master its unique side effect. F/FAs can produce profound rigidity in the diaphragm, chest wall and upper airway within an extremely narrow dosing range. This clinical effect was called wooden chest syndrome (WCS) by anesthesiologists and is not commonly known outside of anesthesiology or to clinicians or researchers in addiction research/medicine. WCS is almost routinely fatal without expert airway management. This review provides relevant clinical human pharmacology and animal data demonstrating that the significant increase in the number of F/FA-induced deaths may involve α-adrenergic and cholinergic receptor-mediated mechanical failure of the respiratory and cardiovascular systems with rapid development of rigidity and airway closure. Although morphine and its prodrug, heroin, can cause mild rigidity in abdominal muscles at high doses, neither presents with the distinct and rapid respiratory failure seen with F/FA-induced WCS, separating F/FA overdose from the slower onset of respiratory depression caused by morphine-derived alkaloids. This distinction has significant consequences for the design and implementation of new pharmacologic strategies to effectively prevent F/FA-induced death. SIGNIFICANCE STATEMENT: Deaths from fentanyl and F/FAs are increasing in spite of availability and awareness of the opioid reversal drug naloxone. This article reviews literature suggesting that naloxone may be ineffective against centrally mediated noradrenergic and cholinergic effects of F/FAs, which clinically manifest as severe muscle rigidity and airway compromise (e.g., wooden chest syndrome) that is rapid and distinct from respiratory depression seen with morphine-derived alkaloids. A physiologic model is proposed and implications for new drug development and treatment are discussed.
Collapse
Affiliation(s)
- Randy Torralva
- CODA Inc., Research Department, Portland, Oregon (R.T.); Research Service, VA Portland Health Care System, Portland, Oregon (R.T., A.J.); and Department of Psychiatry, Oregon Health & Science University, Portland, Oregon (R.T., A.J.)
| | - Aaron Janowsky
- CODA Inc., Research Department, Portland, Oregon (R.T.); Research Service, VA Portland Health Care System, Portland, Oregon (R.T., A.J.); and Department of Psychiatry, Oregon Health & Science University, Portland, Oregon (R.T., A.J.)
| |
Collapse
|
13
|
Rackley CR, MacIntyre NR. Low Tidal Volumes for Everyone? Chest 2019; 156:783-791. [DOI: 10.1016/j.chest.2019.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/13/2019] [Accepted: 06/06/2019] [Indexed: 01/03/2023] Open
|
14
|
Noble DJ, Hochman S. Hypothesis: Pulmonary Afferent Activity Patterns During Slow, Deep Breathing Contribute to the Neural Induction of Physiological Relaxation. Front Physiol 2019; 10:1176. [PMID: 31572221 PMCID: PMC6753868 DOI: 10.3389/fphys.2019.01176] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
Control of respiration provides a powerful voluntary portal to entrain and modulate central autonomic networks. Slowing and deepening breathing as a relaxation technique has shown promise in a variety of cardiorespiratory and stress-related disorders, but few studies have investigated the physiological mechanisms conferring its benefits. Recent evidence suggests that breathing at a frequency near 0.1 Hz (6 breaths per minute) promotes behavioral relaxation and baroreflex resonance effects that maximize heart rate variability. Breathing around this frequency appears to elicit resonant and coherent features in neuro-mechanical interactions that optimize physiological function. Here we explore the neurophysiology of slow, deep breathing and propose that coincident features of respiratory and baroreceptor afferent activity cycling at 0.1 Hz entrain central autonomic networks. An important role is assigned to the preferential recruitment of slowly-adapting pulmonary afferents (SARs) during prolonged inhalations. These afferents project to discrete areas in the brainstem within the nucleus of the solitary tract (NTS) and initiate inhibitory actions on downstream targets. Conversely, deep exhalations terminate SAR activity and activate arterial baroreceptors via increases in blood pressure to stimulate, through NTS projections, parasympathetic outflow to the heart. Reciprocal SAR and baroreceptor afferent-evoked actions combine to enhance sympathetic activity during inhalation and parasympathetic activity during exhalation, respectively. This leads to pronounced heart rate variability in phase with the respiratory cycle (respiratory sinus arrhythmia) and improved ventilation-perfusion matching. NTS relay neurons project extensively to areas of the central autonomic network to encode important features of the breathing pattern that may modulate anxiety, arousal, and attention. In our model, pronounced respiratory rhythms during slow, deep breathing also support expression of slow cortical rhythms to induce a functional state of alert relaxation, and, via nasal respiration-based actions on olfactory signaling, recruit hippocampal pathways to boost memory consolidation. Collectively, we assert that the neurophysiological processes recruited during slow, deep breathing enhance the cognitive and behavioral therapeutic outcomes obtained through various mind-body practices. Future studies are required to better understand the physio-behavioral processes involved, including in animal models that control for confounding factors such as expectancy biases.
Collapse
Affiliation(s)
- Donald J. Noble
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | | |
Collapse
|
15
|
Thoracic sympathetic chain stimulation modulates and entrains the respiratory pattern. Auton Neurosci 2019; 218:16-24. [DOI: 10.1016/j.autneu.2019.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 11/21/2022]
|
16
|
Litvin DG, Dick TE, Smith CB, Jacono FJ. Lung-injury depresses glutamatergic synaptic transmission in the nucleus tractus solitarii via discrete age-dependent mechanisms in neonatal rats. Brain Behav Immun 2018; 70:398-422. [PMID: 29601943 PMCID: PMC6075724 DOI: 10.1016/j.bbi.2018.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 12/26/2022] Open
Abstract
Transition periods (TPs) are brief stages in CNS development where neural circuits can exhibit heightened vulnerability to pathologic conditions such as injury or infection. This susceptibility is due in part to specialized mechanisms of synaptic plasticity, which may become activated by inflammatory mediators released under pathologic conditions. Thus, we hypothesized that the immune response to lung injury (LI) mediated synaptic changes through plasticity-like mechanisms that depended on whether LI occurred just before or after a TP. We studied the impact of LI on brainstem 2nd-order viscerosensory neurons located in the nucleus tractus solitarii (nTS) during a TP for respiratory control spanning (postnatal day (P) 11-15). We injured the lungs of Sprague-Dawley rats by intratracheal instillation of Bleomycin (or saline) just before (P9-11) or after (P17-19) the TP. A week later, we prepared horizontal slices of the medulla and recorded spontaneous and evoked excitatory postsynaptic currents (sEPSCs/eEPSCs) in vitro from neurons in the nTS that received monosynaptic glutamatergic input from the tractus solitarii (TS). In rats injured before the TP (pre-TP), neurons exhibited blunted sEPSCs and TS-eEPSCs compared to controls. The decreased TS-eEPSCs were mediated by differences in postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid receptors (AMPAR). Specifically, compared to controls, LI rats had more Ca2+-impermeable AMPARs (CI-AMPARs) as indicated by: 1) the absence of current-rectification, 2) decreased sensitivity to polyamine, 1-Naphthyl-acetyl-spermine-trihydrochloride (NASPM) and 3) augmented immunoreactive staining for the CI-AMPAR GluA2. Thus, pre-TP-LI acts postsynaptically to blunt glutamatergic transmission. The neuroimmune response to pre-TP-LI included microglia hyper-ramification throughout the nTS. Daily intraperitoneal administration of minocycline, an inhibitor of microglial/macrophage function prevented hyper-ramification and abolished the pre-TP-LI evoked synaptic changes. In contrast, rat-pups injured after the TP (post-TP) exhibited microglia hypo-ramification in the nTS and had increased sEPSC amplitudes/frequencies, and decreased TS-eEPSC amplitudes compared to controls. These synaptic changes were not associated with changes in CI-AMPARs, and instead involved greater TS-evoked use-dependent depression (reduced paired pulse ratio), which is a hallmark of presynaptic plasticity. Thus we conclude that LI regulates the efficacy of TS → nTS synapses through discrete plasticity-like mechanisms that are immune-mediated and depend on whether the injury occurs before or after the TP for respiratory control.
Collapse
Affiliation(s)
- David G Litvin
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Corey B Smith
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
17
|
McAllen RM, Shafton AD, Bratton BO, Trevaks D, Furness JB. Calibration of thresholds for functional engagement of vagal A, B and C fiber groups in vivo. BIOELECTRONICS IN MEDICINE 2018; 1:21-27. [PMID: 29480903 PMCID: PMC5811083 DOI: 10.2217/bem-2017-0001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/10/2017] [Indexed: 02/01/2023]
Abstract
Vagal nerve stimulation is widely used therapeutically but the fiber groups activated are often unknown. AIM To establish a simple protocol to define stimulus thresholds for vagal A, B and C fibers. METHODS The intact left or right cervical vagus was stimulated with 0.1 ms pulses in spontaneously breathing anesthetized rats. Heart and respiratory rate responses to vagal stimulation were recorded. The vagus was subsequently cut distally, and mass action potentials to the same stimuli were recorded. RESULTS Stimulating at either 50 Hz for 2 s or 2 Hz for 10 s at experimentally determined strengths revealed A, B and C fiber thresholds that were related to respiratory and heart rate changes. CONCLUSION Our simple protocol discriminates vagal A, B and C fiber thresholds in vivo.
Collapse
Affiliation(s)
- Robin M McAllen
- Florey Institute of Neuroscience & Mental Health Parkville, Victoria 3010, Australia
| | - Anthony D Shafton
- Florey Institute of Neuroscience & Mental Health Parkville, Victoria 3010, Australia
| | - Bradford O Bratton
- Florey Institute of Neuroscience & Mental Health Parkville, Victoria 3010, Australia
| | - David Trevaks
- Florey Institute of Neuroscience & Mental Health Parkville, Victoria 3010, Australia
| | - John B Furness
- Florey Institute of Neuroscience & Mental Health Parkville, Victoria 3010, Australia
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
18
|
Driessen AK, McGovern AE, Narula M, Yang SK, Keller JA, Farrell MJ, Mazzone SB. Central mechanisms of airway sensation and cough hypersensitivity. Pulm Pharmacol Ther 2017; 47:9-15. [DOI: 10.1016/j.pupt.2017.01.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
|
19
|
Ouahchi Y, Duclos C, Marie JP, Verin E. Implication of the vagus nerve in breathing pattern during sequential swallowing in rats. Physiol Behav 2017; 179:434-441. [DOI: 10.1016/j.physbeh.2017.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
|
20
|
Sun JJ, Huang TW, Neul JL, Ray RS. Embryonic hindbrain patterning genes delineate distinct cardio-respiratory and metabolic homeostatic populations in the adult. Sci Rep 2017; 7:9117. [PMID: 28831138 PMCID: PMC5567350 DOI: 10.1038/s41598-017-08810-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Previous studies based on mouse genetic mutations suggest that proper partitioning of the hindbrain into transient, genetically-defined segments called rhombomeres is required for normal respiratory development and function in neonates. Less clear is what role these genes and the neurons they define play in adult respiratory circuit organization. Several Cre drivers are used to access and study developmental rhombomeric domains (Eng1Cre, HoxA2-Cre, Egr2Cre, HoxB1Cre, and HoxA4-Cre) in the adult. However, these drivers show cumulative activity beyond the brainstem while being used in intersectional genetic experiments to map central respiratory circuitry. We crossed these drivers to conditional DREADD mouse lines to further characterize the functional contributions of Cre defined populations. In the adult, we show that acute DREADD inhibition of targeted populations results in a variety of not only respiratory phenotypes but also metabolic and temperature changes that likely play a significant role in the observed respiratory alterations. DREADD mediated excitation of targeted domains all resulted in death, with unique differences in the patterns of cardio-respiratory failure. These data add to a growing body of work aimed at understanding the role of early embryonic patterning genes in organizing adult respiratory homeostatic networks that may be perturbed in congenital pathophysiologies.
Collapse
Affiliation(s)
- Jenny J Sun
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Teng-Wei Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Jeffrey L Neul
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Russell S Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA. .,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA. .,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA. .,McNair Medical Institute, TX-77030, Houston, USA.
| |
Collapse
|
21
|
Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev 2017; 96:975-1024. [PMID: 27279650 DOI: 10.1152/physrev.00039.2015] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| | - Bradley J Undem
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| |
Collapse
|
22
|
Dhingra RR, Dutschmann M, Galán RF, Dick TE. Kölliker-Fuse nuclei regulate respiratory rhythm variability via a gain-control mechanism. Am J Physiol Regul Integr Comp Physiol 2016; 312:R172-R188. [PMID: 27974314 DOI: 10.1152/ajpregu.00238.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/14/2016] [Accepted: 12/11/2016] [Indexed: 11/22/2022]
Abstract
Respiration varies from breath to breath. On the millisecond timescale of spiking, neuronal circuits exhibit variability due to the stochastic properties of ion channels and synapses. Does this fast, microscopic source of variability contribute to the slower, macroscopic variability of the respiratory period? To address this question, we modeled a stochastic oscillator with forcing; then, we tested its predictions experimentally for the respiratory rhythm generated by the in situ perfused preparation during vagal nerve stimulation (VNS). Our simulations identified a relationship among the gain of the input, entrainment strength, and rhythm variability. Specifically, at high gain, the periodic input entrained the oscillator and reduced variability, whereas at low gain, the noise interacted with the input, causing events known as "phase slips", which increased variability on a slow timescale. Experimentally, the in situ preparation behaved like the low-gain model: VNS entrained respiration but exhibited phase slips that increased rhythm variability. Next, we used bilateral muscimol microinjections in discrete respiratory compartments to identify areas involved in VNS gain control. Suppression of activity in the nucleus tractus solitarii occluded both entrainment and amplification of rhythm variability by VNS, confirming that these effects were due to the activation of the Hering-Breuer reflex. Suppressing activity of the Kölliker-Fuse nuclei (KFn) enhanced entrainment and reduced rhythm variability during VNS, consistent with the predictions of the high-gain model. Together, the model and experiments suggest that the KFn regulates respiratory rhythm variability via a gain control mechanism.
Collapse
Affiliation(s)
- Rishi R Dhingra
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Division of Pulmonary, Critical Care & Sleep, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; and
| | - Roberto F Galán
- Department of Electrical Engineering and Computer Science, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Thomas E Dick
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; .,Division of Pulmonary, Critical Care & Sleep, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
23
|
Ptok M, Kühn D, Miller S, Jungheim M, Schroeter S. [Laryngeal and larynx-associated reflexes]. HNO 2016; 64:435-44. [PMID: 27240793 DOI: 10.1007/s00106-016-0169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The laryngeal adductor reflex and the pharyngoglottal closure reflex protect the trachea and lower respiratory tract against the entrance of foreign material. The laryngeal expiration reflex and the cough reflex serve to propel foreign material, which has penetrated in the cranial direction. The inspiration reflex, the sniff reflex, and the swallowing reflex are further larynx-associated reflexes. In patients with dysphagia the laryngeal adductor reflex can be clinically tested with air pulses. The water swallow test serves to show the integrity of the cough reflex. The sniff reflex is useful to test the abduction function of the vocal folds. Future studies should address laryngeal reflexes more specifically, both for a better understanding of these life-supporting mechanisms and to improve diagnostic procedures in patients with impaired laryngeal function.
Collapse
Affiliation(s)
- M Ptok
- Klinik für Phoniatrie und Pädaudiologie, MHH OE 6510, 30623, Hannover, Deutschland.
| | - D Kühn
- Klinik für Phoniatrie und Pädaudiologie, MHH OE 6510, 30623, Hannover, Deutschland
| | - S Miller
- Klinik für Phoniatrie und Pädaudiologie, MHH OE 6510, 30623, Hannover, Deutschland
| | - M Jungheim
- Klinik für Phoniatrie und Pädaudiologie, MHH OE 6510, 30623, Hannover, Deutschland
| | - S Schroeter
- Klinik für Phoniatrie und Pädaudiologie, MHH OE 6510, 30623, Hannover, Deutschland
| |
Collapse
|
24
|
Dick TE, Mims JR, Hsieh YH, Morris KF, Wehrwein EA. Increased cardio-respiratory coupling evoked by slow deep breathing can persist in normal humans. Respir Physiol Neurobiol 2014; 204:99-111. [PMID: 25266396 DOI: 10.1016/j.resp.2014.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022]
Abstract
Slow deep breathing (SDB) has a therapeutic effect on autonomic tone. Our previous studies suggested that coupling of the cardiovascular to the respiratory system mediates plasticity expressed in sympathetic nerve activity. We hypothesized that SDB evokes short-term plasticity of cardiorespiratory coupling (CRC). We analyzed respiratory frequency (fR), heart rate and its variability (HR&HRV), the power spectral density (PSD) of blood pressure (BP) and the ventilatory pattern before, during, and after a 20-min epoch of SDB. During SDB, CRC and the relative PSD of BP at fR increased; mean arterial pressure decreased; but HR varied; increasing (n = 3), or decreasing (n = 2) or remaining the same (n = 5). After SDB, short-term plasticity was not apparent for the group but for individuals differences existed between baseline and recovery periods. We conclude that a repeated practice, like pranayama, may strengthen CRC and evoke short-term plasticity effectively in a subset of individuals.
Collapse
Affiliation(s)
- Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States.
| | - Joseph R Mims
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Erica A Wehrwein
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|