1
|
Casey DT, Sosa A, Mori V, Hall JK, Suki B, Smith BJ, Bates JHT. Lung architecture amplifies tissue deposition in an agent-based model of fibrotic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646600. [PMID: 40236173 PMCID: PMC11996469 DOI: 10.1101/2025.04.01.646600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease where excessive extracellular matrix (ECM) deposition and remodeling stiffens the lung, impeding its function. Many factors are known to contribute to the development of this fibrosis, but a lack of conclusive understanding endures because of their complex nature. The modification of ECM and the unique architecture of the lung are such factors in IPF's propagation and not solely casualties. Their effects on fibrogenesis are not known and tricky to study. We apply a computational methodology known as an agent-based model (ABM) to simulate cellular behavior as automata. Our ABM is a tissue maintenance model where agents modify tissue density to sustain a global mean and variance to represent the cyclic turnover of ECM. Agents traverse and interact with high fidelity architecture obtained through micro computed tomography (microCT) of mouse lung tissue. The properties of the ABM are validated to microCT of fibrotic mouse lung tissue. We find that increasing cell density is sufficient for fibrogenesis, but that the lung architecture led to more tissue deposition. Our model suggests that lung structure is a relevant contributor to the pathogenesis of IPF.
Collapse
|
2
|
Badrou A, Mariano CA, Ramirez GO, Shankel M, Rebelo N, Eskandari M. Towards constructing a generalized structural 3D breathing human lung model based on experimental volumes, pressures, and strains. PLoS Comput Biol 2025; 21:e1012680. [PMID: 39804822 PMCID: PMC11729960 DOI: 10.1371/journal.pcbi.1012680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Respiratory diseases represent a significant healthcare burden, as evidenced by the devastating impact of COVID-19. Biophysical models offer the possibility to anticipate system behavior and provide insights into physiological functions, advancements which are comparatively and notably nascent when it comes to pulmonary mechanics research. In this context, an Inverse Finite Element Analysis (IFEA) pipeline is developed to construct the first continuously ventilated three-dimensional structurally representative pulmonary model informed by both organ- and tissue-level breathing experiments from a cadaveric human lung. Here we construct a generalizable computational framework directly validated by pressure, volume, and strain measurements using a novel inflating apparatus interfaced with adapted, lung-specific, digital image correlation techniques. The parenchyma, pleura, and airways are represented with a poroelastic formulation to simulate pressure flows within the lung lobes, calibrating the model's material properties with the global pressure-volume response and local tissue deformations strains. The optimization yielded the following shear moduli: parenchyma (2.8 kPa), airways (0.2 kPa), and pleura (1.7 Pa). The proposed complex multi-material model with multi-experimental inputs was successfully developed using human lung data, and reproduced the shape of the inflating pressure-volume curve and strain distribution values associated with pulmonary deformation. This advancement marks a significant step towards creating a generalizable human lung model for broad applications across animal models, such as porcine, mouse, and rat lungs to reproduce pathological states and improve performance investigations regarding medical therapeutics and intervention.
Collapse
Affiliation(s)
- Arif Badrou
- Department of Mechanical Engineering, University of California Riverside, Riverside, California, United States of America
| | - Crystal A. Mariano
- Department of Mechanical Engineering, University of California Riverside, Riverside, California, United States of America
| | - Gustavo O. Ramirez
- Department of Mechanical Engineering, University of California Riverside, Riverside, California, United States of America
| | - Matthew Shankel
- Department of Mechanical Engineering, University of California Riverside, Riverside, California, United States of America
| | - Nuno Rebelo
- Nuno Rebelo Associates, LLC, Fremont, California, United States of America
| | - Mona Eskandari
- Department of Mechanical Engineering, University of California Riverside, Riverside, California, United States of America
- BREATHE Center, School of Medicine, University of California Riverside, Riverside, California, United States of America
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
3
|
Singh D, Slutsky AS, Cronin DS. Alveolar wall hyperelastic material properties determined using alveolar cluster model with experimental stress-stretch and pressure-volume data. J Mech Behav Biomed Mater 2024; 159:106685. [PMID: 39173497 DOI: 10.1016/j.jmbbm.2024.106685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/13/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Micro-scale models of lung tissue have been employed by researchers to investigate alveolar mechanics; however, they have been limited by the lack of biofidelic material properties for the alveolar wall. To address this challenge, a finite element model of an alveolar cluster was developed comprising a tetrakaidecahedron array with the nominal characteristics of human alveolar structure. Lung expansion was simulated in the model by prescribing a pressure and monitoring the volume, to produce a pressure-volume (PV) response that could be compared to experimental PV data. The alveolar wall properties in the model were optimized to match experimental PV response of lungs filled with saline, to eliminate surface tension effects and isolate the alveolar wall tissue response. When simulated in uniaxial tension, the model was in agreement with reported experimental properties of uniaxial tension on excised lung tissue. The work presented herein was able to link micro-scale alveolar response to two disparate macroscopic experimental datasets (stress-stretch and PV response of lung) and presents hyperelastic properties of the alveolar wall for use in alveolar scale finite element models and multi-scale models. Future research will incorporate surface tension effects, and investigate alveolar injury mechanisms.
Collapse
Affiliation(s)
- Dilaver Singh
- University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | | | - Duane S Cronin
- University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
4
|
Gottman DC, Smith BJ. A scale-free model of acute and ventilator-induced lung injury: a network theory approach inspired by seismology. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1392701. [PMID: 38757066 PMCID: PMC11097687 DOI: 10.3389/fnetp.2024.1392701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Introduction Acute respiratory distress syndrome (ARDS) presents a significant clinical challenge, with ventilator-induced lung injury (VILI) being a critical complication arising from life-saving mechanical ventilation. Understanding the spatial and temporal dynamics of VILI can inform therapeutic strategies to mitigate lung damage and improve outcomes. Methods Histological sections from initially healthy mice and pulmonary lavage-injured mice subjected to a second hit of VILI were segmented with Ilastik to define regions of lung injury. A scale-free network approach was applied to assess the correlation between injury regions, with regions of injury represented as 'nodes' in the network and 'edges' quantifying the degree of correlation between nodes. A simulated time series analysis was conducted to emulate the temporal sequence of injury events. Results Automated segmentation identified different lung regions in good agreement with manual scoring, achieving a sensitivity of 78% and a specificity of 85% across 'injury' pixels. Overall accuracy across 'injury', 'air', and 'other' pixels was 81%. The size of injured regions followed a power-law distribution, suggesting a 'rich-get-richer' phenomenon in the distribution of lung injury. Network analysis revealed a scale-free distribution of injury correlations, highlighting hubs of injury that could serve as focal points for therapeutic intervention. Simulated time series analysis further supported the concept of secondary injury events following an initial insult, with patterns resembling those observed in seismological studies of aftershocks. Conclusion The size distribution of injured regions underscores the spatially heterogeneous nature of acute and ventilator-induced lung injury. The application of network theory demonstrates the emergence of injury 'hubs' that are consistent with a 'rich-get-richer' dynamic. Simulated time series analysis demonstrates that the progression of injury events in the lung could follow spatiotemporal patterns similar to the progression of aftershocks in seismology, providing new insights into the mechanisms of injury distribution and propagation. Both phenomena suggest a potential for interventions targeting these injury 'hubs' to reduce the impact of VILI in ARDS management.
Collapse
Affiliation(s)
- Drew C. Gottman
- University of Colorado School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Bradford J. Smith
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
- Section of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
5
|
Mattson CL, Smith BJ. Modeling Ventilator-Induced Lung Injury and Neutrophil Infiltration to Infer Injury Interdependence. Ann Biomed Eng 2023; 51:2837-2852. [PMID: 37592044 PMCID: PMC10842244 DOI: 10.1007/s10439-023-03346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI) are heterogeneous conditions. The spatiotemporal evolution of these heterogeneities is complex, and it is difficult to elucidate the mechanisms driving its progression. Through previous quantitative analyses, we explored the distributions of cellular injury and neutrophil infiltration in experimental VILI and discovered that VILI progression is characterized by both the formation of new injury in quasi-random locations and the expansion of existing injury clusters. Distributions of neutrophil infiltration do not correlate with cell injury progression and suggest a systemic response. To further examine the dynamics of VILI, we have developed a novel computational model that simulates damage (cellular injury progression and neutrophil infiltration) using a stochastic approach. Optimization of the model parameters to fit experimental data reveals that the range and strength of interdependence between existing and new damaged regions both increase as mechanical ventilation patterns become more injurious. The interdependence of cellular injury can be attributed to mechanical tethering forces, while the interdependence of neutrophils is likely due to longer-range cell signaling pathways.
Collapse
Affiliation(s)
- Courtney L Mattson
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, 12705 E. Montview Blvd., Suite 100, Aurora, CO, 80045, USA
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, 12705 E. Montview Blvd., Suite 100, Aurora, CO, 80045, USA.
- Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
6
|
Mattson CL, Okamura K, Hume PS, Smith BJ. Spatiotemporal distribution of cellular injury and leukocytes during the progression of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2022; 323:L281-L296. [PMID: 35700201 PMCID: PMC9423727 DOI: 10.1152/ajplung.00207.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2022] [Accepted: 06/12/2022] [Indexed: 11/22/2022] Open
Abstract
Supportive mechanical ventilation is a necessary lifesaving treatment for acute respiratory distress syndrome (ARDS). This intervention often leads to injury exacerbation by ventilator-induced lung injury (VILI). Patterns of injury in ARDS and VILI are recognized to be heterogeneous; however, quantification of these injury distributions remains incomplete. Developing a more detailed understanding of injury heterogeneity, particularly how it varies in space and time, can help elucidate the mechanisms of VILI pathogenesis. Ultimately, this knowledge can be used to develop protective ventilation strategies that slow disease progression. To expand existing knowledge of VILI heterogeneity, we document the spatial evolution of cellular injury distribution and leukocyte infiltration, on the micro- and macroscales, during protective and injurious mechanical ventilation. We ventilated naïve mice using either high inspiratory pressure and zero positive end-expiratory pressure ventilation or low tidal volume with positive end-expiratory pressure. Distributions of cellular injury, identified with propidium iodide staining, were microscopically analyzed at three levels of injury severity. Cellular injury initiated in diffuse, quasi-random patterns, and progressed through expansion of high-density regions of injured cells termed "injury clusters." The density profile of the expanding injury regions suggests that stress shielding occurs, protecting the already injured regions from further damage. Spatial distribution of leukocytes did not correlate with that of cellular injury or ventilation-induced changes in lung function. These results suggest that protective ventilation protocols should protect the interface between healthy and injured regions to stymie injury propagation.
Collapse
Affiliation(s)
- Courtney L Mattson
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Kayo Okamura
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Patrick S Hume
- Department of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado
- Department of Pediatrics, Pulmonary and Sleep Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, Pulmonary and Sleep Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
7
|
Casey DT, Bou Jawde S, Herrmann J, Mori V, Mahoney JM, Suki B, Bates JHT. Percolation of collagen stress in a random network model of the alveolar wall. Sci Rep 2021; 11:16654. [PMID: 34404841 PMCID: PMC8371101 DOI: 10.1038/s41598-021-95911-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
Fibrotic diseases are characterized by progressive and often irreversible scarring of connective tissue in various organs, leading to substantial changes in tissue mechanics largely as a result of alterations in collagen structure. This is particularly important in the lung because its bulk modulus is so critical to the volume changes that take place during breathing. Nevertheless, it remains unclear how fibrotic abnormalities in the mechanical properties of pulmonary connective tissue can be linked to the stiffening of its individual collagen fibers. To address this question, we developed a network model of randomly oriented collagen and elastin fibers to represent pulmonary alveolar wall tissue. We show that the stress-strain behavior of this model arises via the interactions of collagen and elastin fiber networks and is critically dependent on the relative fiber stiffnesses of the individual collagen and elastin fibers themselves. We also show that the progression from linear to nonlinear stress-strain behavior of the model is associated with the percolation of stress across the collagen fiber network, but that the location of the percolation threshold is influenced by the waviness of collagen fibers.
Collapse
Affiliation(s)
- Dylan T Casey
- Depatment of Medicine, University of Vermont Larner College of Medicine, 149 Beaumont Ave, Burlington, VT, 05405, USA
- Complex Systems Center, University of Vermont, Burlington, VT, USA
| | - Samer Bou Jawde
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jacob Herrmann
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Vitor Mori
- Depatment of Medicine, University of Vermont Larner College of Medicine, 149 Beaumont Ave, Burlington, VT, 05405, USA
| | - J Matthew Mahoney
- Department of Neurological Science, University of Vermont Larner College of Medicine, Burlington, VT, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jason H T Bates
- Depatment of Medicine, University of Vermont Larner College of Medicine, 149 Beaumont Ave, Burlington, VT, 05405, USA.
| |
Collapse
|
8
|
Burrowes KS, Iravani A, Kang W. Integrated lung tissue mechanics one piece at a time: Computational modeling across the scales of biology. Clin Biomech (Bristol, Avon) 2019; 66:20-31. [PMID: 29352607 DOI: 10.1016/j.clinbiomech.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
The lung is a delicately balanced and highly integrated mechanical system. Lung tissue is continuously exposed to the environment via the air we breathe, making it susceptible to damage. As a consequence, respiratory diseases present a huge burden on society and their prevalence continues to rise. Emergent function is produced not only by the sum of the function of its individual components but also by the complex feedback and interactions occurring across the biological scales - from genes to proteins, cells, tissue and whole organ - and back again. Computational modeling provides the necessary framework for pulling apart and putting back together the pieces of the body and organ systems so that we can fully understand how they function in both health and disease. In this review, we discuss models of lung tissue mechanics spanning from the protein level (the extracellular matrix) through to the level of cells, tissue and whole organ, many of which have been developed in isolation. This is a vital step in the process but to understand the emergent behavior of the lung, we must work towards integrating these component parts and accounting for feedback across the scales, such as mechanotransduction. These interactions will be key to unlocking the mechanisms occurring in disease and in seeking new pharmacological targets and improving personalized healthcare.
Collapse
Affiliation(s)
- Kelly S Burrowes
- Department of Chemical and Materials Engineering, University of Auckland, 2-6 Park Avenue, Auckland 1023, New Zealand; Auckland Bioengineering Institute, University of Auckland, 70 Symonds Street, Auckland 1010, New Zealand.
| | - Amin Iravani
- Department of Chemical and Materials Engineering, University of Auckland, 2-6 Park Avenue, Auckland 1023, New Zealand.
| | - Wendy Kang
- Auckland Bioengineering Institute, University of Auckland, 70 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
9
|
Knudsen L, Ochs M. The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochem Cell Biol 2018; 150:661-676. [PMID: 30390118 PMCID: PMC6267411 DOI: 10.1007/s00418-018-1747-9] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2018] [Indexed: 12/14/2022]
Abstract
The mammalian lung´s structural design is optimized to serve its main function: gas exchange. It takes place in the alveolar region (parenchyma) where air and blood are brought in close proximity over a large surface. Air reaches the alveolar lumen via a conducting airway tree. Blood flows in a capillary network embedded in inter-alveolar septa. The barrier between air and blood consists of a continuous alveolar epithelium (a mosaic of type I and type II alveolar epithelial cells), a continuous capillary endothelium and the connective tissue layer in-between. By virtue of its respiratory movements, the lung has to withstand mechanical challenges throughout life. Alveoli must be protected from over-distension as well as from collapse by inherent stabilizing factors. The mechanical stability of the parenchyma is ensured by two components: a connective tissue fiber network and the surfactant system. The connective tissue fibers form a continuous tensegrity (tension + integrity) backbone consisting of axial, peripheral and septal fibers. Surfactant (surface active agent) is the secretory product of type II alveolar epithelial cells and covers the alveolar epithelium as a biophysically active thin and continuous film. Here, we briefly review the structural components relevant for gas exchange. Then we describe our current understanding of how these components function under normal conditions and how lung injury results in dysfunction of alveolar micromechanics finally leading to lung fibrosis.
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany. .,REBIRTH Cluster of Excellence, Hannover, Germany.
| |
Collapse
|
10
|
Rampadarath AK, Donovan GM. A Distribution-Moment Approximation for Coupled Dynamics of the Airway Wall and Airway Smooth Muscle. Biophys J 2018; 114:493-501. [PMID: 29401446 PMCID: PMC5984954 DOI: 10.1016/j.bpj.2017.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/05/2017] [Accepted: 11/15/2017] [Indexed: 01/27/2023] Open
Abstract
Asthma is fundamentally a disease of airway constriction. Due to a variety of experimental challenges, the dynamics of airways are poorly understood. Of specific interest is the narrowing of the airway due to forces produced by the airway smooth muscle wrapped around each airway. The interaction between the muscle and the airway wall is crucial for the airway constriction that occurs during an asthma attack. Although cross-bridge theory is a well-studied representation of complex smooth muscle dynamics, and these dynamics can be coupled to the airway wall, this comes at significant computational cost-even for isolated airways. Because many phenomena of interest in pulmonary physiology cannot be adequately understood by studying isolated airways, this presents a significant limitation. We present a distribution-moment approximation of this coupled system and study the validity of the approximation throughout the physiological range. We show that the distribution-moment approximation is valid in most conditions, and we explore the region of breakdown. These results show that in many situations, the distribution-moment approximation is a viable option that provides an orders-of-magnitude reduction in computational complexity; not only is this valuable for isolated airway studies, but it moreover offers the prospect that rich ASM dynamics might be incorporated into interacting airway models where previously this was precluded by computational cost.
Collapse
Affiliation(s)
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Donovan GM. Systems-level airway models of bronchoconstriction. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:459-67. [PMID: 27348217 DOI: 10.1002/wsbm.1349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/23/2016] [Accepted: 05/18/2016] [Indexed: 01/26/2023]
Abstract
Understanding lung and airway behavior presents a number of challenges, both experimental and theoretical, but the potential rewards are great in terms of both potential treatments for disease and interesting biophysical phenomena. This presents an opportunity for modeling to contribute to greater understanding, and here, we focus on modeling efforts that work toward understanding the behavior of airways in vivo, with an emphasis on asthma. We look particularly at those models that address not just isolated airways but many of the important ways in which airways are coupled both with each other and with other structures. This includes both interesting phenomena involving the airways and the layer of airway smooth muscle that surrounds them, and also the emergence of spatial ventilation patterns via dynamic airway interaction. WIREs Syst Biol Med 2016, 8:459-467. doi: 10.1002/wsbm.1349 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Bates JHT. Systems physiology of the airways in health and obstructive pulmonary disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:423-37. [PMID: 27340818 DOI: 10.1002/wsbm.1347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/10/2023]
Abstract
Fresh air entering the mouth and nose is brought to the blood-gas barrier in the lungs by a repetitively branching network of airways. Provided the individual airway branches remain patent, this airway tree achieves an enormous amplification in cross-sectional area from the trachea to the terminal bronchioles. Obstructive lung diseases such as asthma occur when airway patency becomes compromised. Understanding the pathophysiology of these obstructive diseases thus begins with a consideration of the factors that determine the caliber of an individual airway, which include the force balance between the inward elastic recoil of the airway wall, the outward tethering forces of its parenchymal attachments, and any additional forces due to contraction of airway smooth muscle. Other factors may also contribute significantly to airway narrowing, such as thickening of the airway wall and accumulation of secretions in the lumen. Airway obstruction becomes particularly severe when these various factors occur in concert. However, the effect of airway abnormalities on lung function cannot be fully understood only in terms of what happens to a single airway because narrowing throughout the airway tree is invariably heterogeneous and interdependent. Obstructive lung pathologies thus manifest as emergent phenomena arising from the way in which the airway tree behaves a system. These emergent phenomena are studied with clinical measurements of lung function made by spirometry and by mechanical impedance measured with the forced oscillation technique. Anatomically based computational models are linking these measurements to underlying anatomic structure in systems physiology terms. WIREs Syst Biol Med 2016, 8:423-437. doi: 10.1002/wsbm.1347 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jason H T Bates
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|