1
|
Chen Q, Xie L, Wang J, Su X, Ye X, Lin X. Resveratrol inhibits lipopolysaccharide‑induced MUC5AC expression and airway inflammation via MAPK and Nrf2 pathways in human bronchial epithelial cells and an acute inflammatory mouse model. Mol Med Rep 2025; 31:157. [PMID: 40211706 PMCID: PMC12004211 DOI: 10.3892/mmr.2025.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 02/06/2025] [Indexed: 04/16/2025] Open
Abstract
Pathological mucus hypersecretion is an important clinical hallmark of chronic airway inflammatory diseases and yet there is a lack of effective therapeutic medicine. Resveratrol, a dietary polyphenol, has been shown to possess anti‑aging, antioxidation, anti‑inflammation and tumor prevention effects. However, the effect and underlying mechanism of resveratrol in lipopolysaccharide (LPS) induced‑mucus hypersecretion remain to be elucidated. Among more than 20 mucin family members, mucin 5ac (MUC5AC) is a major glycoprotein in airway mucus. The present study investigated the therapeutic effects and mechanisms of resveratrol in LPS‑induced MUC5AC expression in human bronchial epithelial (NCI‑H292) cells and an acute inflammatory murine model. It found that resveratrol markedly attenuated LPS‑induced MUC5AC expression and reactive oxygen species production in NCI‑H292 cells. Moreover, resveratrol increased activation of nuclear factor erythroid‑2‑related factor 2 (Nrf2) and phosphorylation of mitogen‑activated protein kinase (MAPK). Notably, compared with negative control, knockdown of Nrf2 by small interfering RNA and specific inhibitors of ERK/p38 MAPK markedly abrogated the downregulative effect of resveratrol on LPS‑induced MUC5AC expression in NCI‑H292 cells. Additionally, in vivo effects on histopathology and gene expression were assessed in lung tissues collected after intratracheal instillation of LPS with or without resveratrol treatment. Western blotting of lung tissue samples confirmed that administration of resveratrol inhibited MUC5AC expression in LPS‑induced acute inflammatory mice, but increased Nrf2 expression along with phosphorylation of ERK and p38. Periodic acid‑Schiff's staining also showed that resveratrol suppressed mucin production. Compared with the LPS group, administration of resveratrol effectively decreased the numbers of inflammatory cells and neutrophils in bronchoalveolar lavage fluid, as well as markedly alleviating the infiltration of exacerbated inflammatory cells in lung tissue. In conclusion, resveratrol exerted protective effects against LPS‑induced MUC5AC overexpression, inflammation and oxidative stress by activating ERK/p38 MAPK and Nrf2 pathway. Furthermore, the results suggested that resveratrol might be a potential therapeutic agent to inhibit airway mucus hyperproduction.
Collapse
Affiliation(s)
- Qiaojuan Chen
- The Second Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350012, P.R. China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Liutian Xie
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Graduate School, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
- Pulmonary Medicine Center of Fujian Province, Quanzhou, Fujian 362000, P.R. China
| | - Jianming Wang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Pulmonary Medicine Center of Fujian Province, Quanzhou, Fujian 362000, P.R. China
- Department of Intensive Care Unit, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xiaoshan Su
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Pulmonary Medicine Center of Fujian Province, Quanzhou, Fujian 362000, P.R. China
| | - Xiangjia Ye
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Pulmonary Medicine Center of Fujian Province, Quanzhou, Fujian 362000, P.R. China
| | - Xiaoping Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Pulmonary Medicine Center of Fujian Province, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
2
|
Wei T, Wang X, Lang K, Song Y, Luo J, Gu Z, Yang D, Song Y. Peroxiredoxin 6 Protects Pulmonary Epithelial Cells From Cigarette-related Ferroptosis in Chronic Obstructive Pulmonary Disease. Inflammation 2025; 48:662-675. [PMID: 38954261 DOI: 10.1007/s10753-024-02077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
Peroxiredoxin 6 (PRDX6) has a protective effect on pulmonary epithelial cells against cigarette smoke (CS)-induced ferroptosis. This study investigates the role of PRDX6 in the development of chronic obstructive pulmonary disease (COPD) and its possibility as a target. We observed that PRDX6 was downregulated in lung tissues of COPD patients and in CS-stimulated cells. The degradation of PRDX6 could be through the lysosomal pathway. PRDX6 deficiency exacerbated pulmonary inflammation and mucus hypersecretion in vivo. Overexpression of PRDX6 in Beas-2B cells ameliorated CS-induced cell death and inflammation, suggesting its protective role against CS-induced damage. Furthermore, PRDX6 deficiency promoted ferroptosis by adding the content of iron and reactive oxygen species, while iron chelation with deferoxamine mitigated CS-induced ferroptosis, cell death, and inflammatory infiltration both in vitro and in vivo. The critical role of PRDX6 in regulating ferroptosis suggests that targeting PRDX6 or iron metabolism may represent a promising strategy for COPD treatment.
Collapse
Affiliation(s)
- Tingting Wei
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, PR China
| | - Xiaocen Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, PR China
| | - Ke Lang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, PR China
| | - Yansha Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, PR China
| | - Jinlong Luo
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, PR China
| | - Zhaolin Gu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, PR China
| | - Dong Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, PR China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, People's Republic of China.
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, PR China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Liao J, Zhang Y, Yang J, Chen L, Zhang J, Chen X. Peroxiredoxin 6 in Stress Orchestration and Disease Interplay. Antioxidants (Basel) 2025; 14:379. [PMID: 40298631 PMCID: PMC12024067 DOI: 10.3390/antiox14040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
As a moonlighting protein with multiple enzymatic activities, peroxiredoxin 6 (PRDX6) maintains redox homeostasis, regulates phospholipid metabolism, and mediates intra- and inter-cellular signaling transduction. Its expression and activity can be regulated by diverse stressors. However, the roles and relevant mechanisms of these regulators in various conditions have yet to be comprehensively reviewed. In this study, these stressors were systematically reviewed both in vivo and in vitro and classified into chemical, physical, and biological categories. We found that the regulatory effects of these stressors on PRDX6 expression were primarily mediated via key transcriptional factors (e.g., NRF2, HIF-1α, SP1, and NF-κB), micro-RNAs, and receptor- or kinase-dependent signaling pathways. Additionally, certain stressors, including reactive oxygen species, pH fluctuations, and post-translational modifications, induced the structure-based functional switches in the PRDX6 enzyme. We further reviewed the altered expression of PRDX6 under various disease conditions, with a particular focus on neuropsychiatric disorders and cancers, and proposed the concept of PRDX6-related disorders (PRD), which refers to a spectrum of diseases mediated by or associated with dysregulated PRDX6 expression. Finally, we found that an exogenous supplementation of PRDX6 protein provided preventive and therapeutic potentials for oxidative stress-related injuries in both in vivo and in vitro models. Taken together, this review underscores the critical role of PRDX6 as a cellular orchestrator in response to various stressors, highlighting its clinical potential for disease monitoring and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jiangfeng Liao
- Department of Neurology, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (J.L.); (J.Y.); (L.C.)
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China;
| | - Yusi Zhang
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China;
| | - Jianwei Yang
- Department of Neurology, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (J.L.); (J.Y.); (L.C.)
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Longfei Chen
- Department of Neurology, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (J.L.); (J.Y.); (L.C.)
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Jing Zhang
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China;
| | - Xiaochun Chen
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China;
| |
Collapse
|
4
|
Oh JH, Park J, Kang HK, Park HJ, Park Y. Tissue damage alleviation and mucin inhibition by P5 in a respiratory infection mouse model with multidrug-resistant Acinetobacter baumannii. Biomed Pharmacother 2024; 181:117724. [PMID: 39612861 DOI: 10.1016/j.biopha.2024.117724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
Although the discovery of antibiotics has made significant positive contributions to public health and medicine, it now poses a serious threat due to the increasing antibiotic resistance in various bacteria. Carbapenem-resistant and multidrug-resistant (MDR) Acinetobacter baumannii is spreading globally, exacerbating respiratory diseases such as chronic obstructive pulmonary disease and cystic fibrosis. Antimicrobial peptides (AMPs), with broad antibacterial activity, have emerged as promising alternatives for treating MDR A. baumannii infections. The AMP P5 exhibits strong antibacterial and anti-biofilm activities against MDR A. baumannii strains isolated from patients. Compared to colistin, a commonly used antibiotic for MDR A. baumannii infections, P5 has a lower potential for inducing drug resistance. Additionally, P5 displays stability in human serum and minimal cytotoxicity in human cell lines. P5 not only suppressed the overexpression of pro-inflammatory cytokines and inflammatory transcription factors in lung epithelial cells (A549) and in a mouse model of respiratory infection but also alleviated lung tissue damage caused by infection. Moreover, P5 effectively alleviated excessive mucin secretion in vitro and in vivo by inhibiting inflammatory transcription factors, epidermal growth factor receptor, and signal transducer and activator of transcription 3-key regulators of mucin expression, a hallmark of inflammatory respiratory diseases. These findings highlight the therapeutic potential of P5 in treating MDR A. baumannii infections and associated inflammatory respiratory conditions.
Collapse
Affiliation(s)
- Jun Hee Oh
- Department of Integrative Biological Sciences, Chosun University Gwangju 61452, Republic of Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju 38065, Republic of Korea
| | - Hee Kyoung Kang
- Department of Integrative Biological Sciences, Chosun University Gwangju 61452, Republic of Korea
| | - Hee Joo Park
- Department of Integrative Biological Sciences, Chosun University Gwangju 61452, Republic of Korea
| | - Yoonkyung Park
- Department of Integrative Biological Sciences, Chosun University Gwangju 61452, Republic of Korea; Research Center for Proteinaceous Materials (RCPM), Chosun University Gwangju 61452, Republic of Korea.
| |
Collapse
|
5
|
Sharma G, Gupta DP, Ganguly K, Anand MP, Srivastava S. Meta-Analysis and DIA-MS-Based Proteomic Investigation of COPD Patients and Asymptomatic Smokers in the Indian Population. J Proteome Res 2024; 23:4973-4987. [PMID: 39436829 DOI: 10.1021/acs.jproteome.4c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is India's second largest cause of death and is largely caused by smoking. Asymptomatic smokers develop COPD due to genetic, environmental, and molecular variables, making early screening crucial. Data-independent acquisition mass spectrometry (DIA-MS) based-proteomics offers an unbiased method to analyze proteomic profiles. This study is the first to use DIA-based proteomics to analyze individual serum samples from three distinct male cohorts: healthy individuals (n = 10), asymptomatic smokers (n = 10), and COPD patients (n = 10). This comprehensive approach identified 667 proteins with a 1% false discovery rate. Differentially expressed proteins included 40 in the normal versus asymptomatic comparison, 88 in the COPD versus normal comparison, and 40 in the COPD versus asymptomatic comparison. Among them, protein-associated genes such as PRDX6, ELANE, PRKCSH, PRTN3, and MNDA could help differentiate COPD from asymptomatic smokers, while ELANE, H3-3A, IGHE, SLC4A1, and SERPINA11 could differentiate COPD from healthy subjects. Pathway enrichment and protein-protein interaction analyses revealed significant alterations in hemostasis, immune system functions, fibrin clot formation, and post-translational protein modifications. Key proteins were validated using a parallel reaction monitoring assay. DIA data are available via ProteomeXchange with identifier PXD055242. Our findings reveal key protein classifiers in COPD patients, asymptomatic smokers, and healthy individuals, helping clinicians understand disease pathobiology and improve disease management and quality of life.
Collapse
Affiliation(s)
- Gautam Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Debarghya Pratim Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Mahesh Padukudru Anand
- Department of Respiratory Medicine, JSS Medical College, JSSAHER, Mysore, Karnataka 570015, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
6
|
Chen X, Tzekov R, Su M, Zhu Y, Han A, Li W. Hydrogen peroxide-induced oxidative damage and protective role of peroxiredoxin 6 protein via EGFR/ERK signaling pathway in RPE cells. Front Aging Neurosci 2023; 15:1169211. [PMID: 37529008 PMCID: PMC10388243 DOI: 10.3389/fnagi.2023.1169211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Damage to retinal pigment epithelium (RPE) cells caused by oxidative stress is closely related to the pathogenesis of several blinding retinal diseases, such as age-related macular degeneration (AMD), retinitis pigmentosa, and other inherited retinal degenerative conditions. However, the mechanisms of this process are poorly understood. Hence, the goal of this study was to investigate hydrogen peroxide (H2O2)-induced oxidative damage and protective role of peroxiredoxin 6 (PRDX6) protein via EGFR/ERK signaling pathway in RPE cells. Methods Cells from a human RPE cell line (ARPE-19 cells) were treated with H2O2, and then cell viability was assessed using the methyl thiazolyl tetrazolium assay. Cell death and reactive oxygen species (ROS) were detected by flow cytometry. The levels of PRDX6, epidermal growth factor receptor (EGFR), P38 mitogen-activated protein kinase (P38MAPK), c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) were detected by Western blot assay. PRDX6 and EGFR were also detected via immunofluorescence staining. Results Our results show that H2O2 inhibited cell viability, induced cell death, and increased ROS levels in ARPE-19 cells. It was also found that H2O2 decreased the levels of PRDX6, EGFR, and phosphorylated ERK but increased the levels of phosphorylated P38MAPK and JNK. PRDX6 overexpression was found to attenuate H2O2-induced inhibition of cell viability and increased cell death and ROS production in ARPE-19 cells. PRDX6 overexpression also increased the expression of EGFR and alleviated the H2O2-induced decrease in EGFR and phosphorylated ERK. Moreover, inhibition of epidermal growth factor-induced EGFR and ERK signaling in oxidative stress was partially blocked by PRDX6 overexpression. Discussion Our findings indicate that PRDX6 overexpression protects RPE cells from oxidative stress damage caused by decreasing ROS production and partially blocking the inhibition of the EGFR/ERK signaling pathway induced by oxidative stress. Therefore, PRDX6 shows promise as a therapeutic target for the prevention of RPE cell damage caused by oxidative stress associated with retinal diseases.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Ophthalmology, Xi’an No. 1 Hospital, Shaanxi Institute of Ophthalmology, First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi, China
- Xiamen Eye Center of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Radouil Tzekov
- Department of Ophthalmology, University of South Florida, Tampa, FL, United States
| | - Mingyang Su
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Yusheng Zhu
- Department of Ophthalmology, Xi’an No. 1 Hospital, Shaanxi Institute of Ophthalmology, First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi, China
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Wensheng Li
- Shanghai Aier Eye Hospital, Shanghai, China
- Shanghai Aier Eye Institute, Shanghai, China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Sun Y, Miao X, Zhu L, Liu J, Lin Y, Xiang G, Wu X, Wang X, Ni Z, Li S. Autocrine TGF-alpha is associated with Benzo(a)pyrene-induced mucus production and MUC5AC expression during allergic asthma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113833. [PMID: 36068759 DOI: 10.1016/j.ecoenv.2022.113833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
OBJECTS Benzo(a)pyrene (BaP), an environmental pollutant, is present in high concentrations in urban smog and cigarette smoke and has been reported to promote high mucin 5AC (MUC5AC) expression. Epithelium-derived inflammatory cytokines are considered an important modulator of mucus oversecretion and MUC5AC overexpression. Here, we investigated whether the effect of BaP on MUC5AC overexpression was associated with cytokine autocrine activity in vivo and in vitro. METHODS In vivo, BALB/c mice were treated with ovalbumin (OVA) in the presence or absence of BaP. Allergy-induced mucus production was assessed by Alcian Blue Periodic acid Schiff (AB-PAS) staining. The human airway epithelial cell line NCI-H292 was used in vitro. MUC5AC and transforming growth factor (TGF)-α mRNA levels were assessed with real-time quantitative PCR. The concentration of cytokines was measured by ELISA. The MUC5AC, p-ERK, ERK, p-EGFR and EGFR proteins were detected by Western blotting in cells or by immunohistochemistry in mouse lungs. Small-interfering RNAs were used for gene silencing. RESULTS TGF-α was overproduced in the supernatant of NCI-H292 cells treated with BaP. Knockdown of TGF-α expression inhibited the BaP-induced increase in MUC5AC expression and subsequent activation of the EGFR-ERK signalling pathway. Knocking down aryl hydrocarbon receptor (AhR) expression or treatment with an ROS inhibitor (N-acetyl-L-cysteine) could relieve the TGF-α secretion induced by BaP in epithelial cells. In an animal study, coexposure to BaP with OVA increased mucus production, MUC5AC expression and ROS-EGFR-ERK activation in the lung as well as TGF-α levels in bronchoalveolar lavage fluid (BALF). Furthermore, the concentration of TGF-α in BALF was correlated with MUC5AC mRNA levels. Additionally, TGF-α expression was found to be positively correlated with MUC5AC expression in the airway epithelial cells of smokers. Compared with non-smoker asthma patients, TGF-α serum levels were also elevated in smoker asthma patients. CONCLUSION Autocrine TGF-α was associated with BaP-induced MUC5AC expression in vitro and in vivo. BaP induced TGF-α secretion by activating AhR and producing ROS, which led to activation of the EGFR-ERK pathway.
Collapse
Affiliation(s)
- Yipeng Sun
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Xiayi Miao
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Linyun Zhu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Jinjin Liu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Yuhua Lin
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | - Guiling Xiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Xiaodan Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Xiaobiao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China.
| | - Zhenhua Ni
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China; Central lab, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China.
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
8
|
Kim JH, Jo S, Lee S, Yoo GM, Na HG, Choi YS, Bae CH, Song SY, Kim YD. Peroxiredoxin 2 Inhibits Lipopolysaccharide Induced Mucin Expression and Reactive Oxygen Species Production in Human Airway Epithelial Cells. KOREAN JOURNAL OF OTORHINOLARYNGOLOGY-HEAD AND NECK SURGERY 2021; 64:887-895. [DOI: 10.3342/kjorl-hns.2021.00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 07/25/2023]
Abstract
Background and Objectives Peroxiredoxin (Prx) is an antioxidant enzyme involved in signaling pathway. Prx2 is the most abundant in mammalian gray matter neurons and has protective role under oxidative stress. MUC5AC and MUC5B are typical mucin genes in human airway epithelial cells. Even if free radicals play a key role in chronic respiratory inflammatory diseases, the effects of the Prx2 on mucin expression and oxidative stress are not clearly known. The purpose of this study is to investigate the effect of Prx2 on lipopolysaccharide (LPS)-induced MUC5AC/5B expression and reactive oxygen species (ROS) in human airway epithelial cells.Subjects and Method In NCI-H292 cells and human nasal epithelial cells, the effects of Prx2 on LPS-induced MUC5AC/5B expression and ROS production were investigated using reverse transcriptase-polymerase chain reaction, real-time polymerase chain reaction, enzyme linked immunosorbent assay (ELISA) and flow cytometry analysis.Results MUC5AC, MUC5B mRNA expression and protein production were increased by LPS. ROS production was also increased by LPS. Prx2 suppressed the LPS-induced MUC5AC mRNA expression and protein production as well as ROS production. However, Prx2 did not inhibit MUC5B mRNA expression and protein production. N-acetylcysteine, diphenyleneiodonium, and apocynin also inhibited LPS-induced ROS production.Conclusion These results may show that Prx2 suppresses LPS-induced MUC5AC expression via ROS in human airway epithelial cells.
Collapse
|
9
|
Bi J, Lin Y, Sun Y, Zhang M, Chen Q, Miu X, Tang L, Liu J, Zhu L, Ni Z, Wang X. Investigation of the Active Ingredients and Mechanism of Polygonum cuspidatum in Asthma Based on Network Pharmacology and Experimental Verification. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1075-1089. [PMID: 33727796 PMCID: PMC7955765 DOI: 10.2147/dddt.s275228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Background Polygonum cuspidatum is a Chinese medicine commonly used to treat phlegm-heat asthma. However, its anti-asthmatic active ingredients and mechanism are still unknown. The aim of this study was to predict the active ingredients and pathways of Polygonum cuspidatum and to further explore the potential molecular mechanism in asthma by using network pharmacology. Methods The active ingredients and their targets related to Polygonum cuspidatum were seeked out with the TCM systematic pharmacology analysis platform (TCMSP), and the ingredient-target network was constructed. The GeneCards, DrugBank and OMIM databases were used to collect and screen asthma targets, and then the drug-target-disease interaction network was constructed with Cytoscape software. A target protein-protein interaction (PPI) network was constructed using the STRING database to screen key targets. Finally, GO and KEGG analyses were used to identify biological processes and signaling pathways. The anti-asthmatic effects of Polygonum cuspidatum and its active ingredients were tested in vitro for regulating airway smooth muscle (ASM) cells proliferation and MUC5AC expression, two main symptoms of asthma, by using Real-time PCR, Western blotting, CCK-8 assays and annexin V-FITC staining. Results Twelve active ingredients in Polygonum cuspidatum and 479 related target proteins were screened in the relevant databases. Among these target proteins, 191 genes had been found to be differentially expressed in asthma. PPI network analysis and KEGG pathway enrichment analysis predicted that the Polygonum cuspidatum could regulate the AKT, MAPK and apoptosis signaling pathways. Consistently, further in vitro experiments demonstrated that Polygonum cuspidatum and resveratrol (one active ingredient of Polygonum cuspidatum) were shown to inhibit ASM cells proliferation and promoted apoptosis of ASM cells. Furthermore, Polygonum cuspidatum and resveratrol inhibited PDGF-induced AKT/mTOR activation in ASM cells. In addition, Polygonum cuspidatum decreased H2O2 induced MUC5AC overexpression in airway epithelial NCI-H292 cells. Conclusion Polygonum cuspidatum could alleviate the symptoms of asthma including ASM cells proliferation and MUC5AC expression through the mechanisms predicted by network pharmacology, which provides a basis for further understanding of Polygonum cuspidatum in the treatment of asthma.
Collapse
Affiliation(s)
- Junjie Bi
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Yuhua Lin
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Yipeng Sun
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Qingge Chen
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Xiayi Miu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Lingling Tang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Jinjin Liu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Linyun Zhu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Zhenhua Ni
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Xiongbiao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| |
Collapse
|
10
|
Guo J, Cao W, Chen C, Chen X. Peroxiredoxin 6 overexpression regulates adriamycin-induced myocardial injury, oxidative stress and immune response in rats. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1320. [PMID: 33209900 PMCID: PMC7661857 DOI: 10.21037/atm-20-6598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Adriamycin is an anthracycline drug used to treat a variety of tumors. Adriamycin has a much stronger affinity for myocardial tissue than other body tissues. Cancer patients treated with adriamycin are prone to toxic damage to heart tissue. Peroxiredoxin 6 (PRDX6) is a novel antioxidant enzyme in metabolic diseases, the aim of this study was to investigate the role of PRDX6 in myocardial injury. Methods Sixty male specific-pathogen-free Wistar rats were enrolled and divided equally into the control group (control), the Adriamycin group, the Adriamycin + empty vector lentivirus (Adriamycin + LV) group, and the Adriamycin + Peroxiredoxin 6 overexpression (Adriamycin + PRDX6) group. Western blot, reverse transcription-polymerase chain reaction (PCR), enzyme-linked immunosorbent assay, hematoxylin and eosin staining (HE) and immunohistochemistry were used in this research. Results The myocardial tissues of the Adriamycin group had significantly lower expression levels of PRDX6 and PRDX6 mRNA than those of the control group, and the myocardial tissues of the Adriamycin + PRDX6 rats had significantly higher expression levels of PRDX6 and PRDX6 mRNA than those of the Adriamycin + LV group. Serum creatine kinase isoenzyme (CK-MB), myoglobin (Mb), cardiac troponin I (cTnI), myocardial injury, positive rate of caspase-3, B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) levels, malondialdehyde (MDA), lactate dehydrogenase (LDH), IL-1β, IL-6, inducible nitric oxide synthase (iNOS), and IL-4 proteins in the adriamycin-induced rats were significantly higher than those in the control group, while superoxide dismutase (SOD) activity was significantly lower than that in the control group. PRDX6 overexpression reversed the above results. Conclusions PRDX6 overexpression can alleviate adriamycin-induced myocardial injury in rats, which may be related to oxidative stress regulation and the levels of inflammatory factors.
Collapse
Affiliation(s)
- Jianshu Guo
- Department of Geriatric Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science & Technology, Chengdu, China
| | - Weiping Cao
- Department of Cardiology, People's Hospital of Leshan, Leshan, China
| | - Chi Chen
- Department of Geriatric Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science & Technology, Chengdu, China
| | - Xiaohan Chen
- Department of Geriatric Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science & Technology, Chengdu, China
| |
Collapse
|
11
|
An L, Zhao J, Sun X, Zhou Y, Zhao Z. S-allylmercaptocysteine inhibits mucin overexpression and inflammation via MAPKs and PI3K-Akt signaling pathways in acute respiratory distress syndrome. Pharmacol Res 2020; 159:105032. [PMID: 32574825 PMCID: PMC7305891 DOI: 10.1016/j.phrs.2020.105032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022]
Abstract
Cytokine storm is an important cause of acute respiratory distress syndrome and multiple organ failure. Excessive secretion and accumulation of mucins on the surface of airway cause airway obstruction and exacerbate lung infections. MUC5AC and MUC5B are the main secreted mucins and overexpressed in various inflammatory responses. S-allylmercaptocysteine, a water-soluble organic sulfur compound extracted from garlic, has anti-inflammatory and anti-oxidative effects for various pulmonary diseases. The aim of this work was to investigate the therapeutic effects of SAMC on mucin overproduction and inflammation in 16HBE cells and LPS-induced ARDS mice. Results show that SAMC treatment ameliorated inflammatory cell infiltration and lung histopathological changes in the LPS-induced ARDS mice. SAMC also inhibited the expressions of MUC5AC and MUC5B, decreased the production of pro-inflammatory markers (IL-6, TNF-α, CD86 and IL-12) and increased the production of anti-inflammatory markers (IL-10, CD206 and TGF-β). These results confirm that SAMC had potential beneficial effects on suppressed hyperinflammation and mucin overexpression. Furthermore, SAMC exerted the therapeutic effects through the inhibition of phosphorylation of MAPKs and PI3K-Akt signaling pathways in the 16HBE cells and mice. Overall, our results demonstrate the effects of SAMC on the LPS-induced mucin overproduction and inflammation both in the 16HBE cells and mice.
Collapse
Affiliation(s)
- Lulu An
- School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Jianxiong Zhao
- School of Basic Medical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Xiao Sun
- School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Yingying Zhou
- School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Shandong Key University Laboratory of Pharmaceutics & Drug Delivery Systems, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
12
|
Lee YJ. Knockout Mouse Models for Peroxiredoxins. Antioxidants (Basel) 2020; 9:antiox9020182. [PMID: 32098329 PMCID: PMC7070531 DOI: 10.3390/antiox9020182] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Peroxiredoxins (PRDXs) are members of a highly conserved peroxidase family and maintain intracellular reactive oxygen species (ROS) homeostasis. The family members are expressed in most organisms and involved in various biological processes, such as cellular protection against ROS, inflammation, carcinogenesis, atherosclerosis, heart diseases, and metabolism. In mammals, six PRDX members have been identified and are subdivided into three subfamilies: typical 2-Cys (PRDX1, PRDX2, PRDX3, and PRDX4), atypical 2-Cys (PRDX5), and 1-Cys (PRDX6) subfamilies. Knockout mouse models of PRDXs have been developed to investigate their in vivo roles. This review presents an overview of the knockout mouse models of PRDXs with emphases on the biological and physiological changes of these model mice.
Collapse
Affiliation(s)
- Young Jae Lee
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea
| |
Collapse
|
13
|
Tong X, Liang R, Jia Y, Qin W, Guo C, Wu X, Wang Z, Chen D, Tan N. Suhuang Antitussive Capsules-Ameliorative Effects on LPS-Induced Sputum Obstruction in Mice Through Promoting HGF Secretion. Front Pharmacol 2019; 10:1422. [PMID: 31920638 PMCID: PMC6930918 DOI: 10.3389/fphar.2019.01422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Sputum obstruction is one of common cough complications, which is tightly associated with airway inflammation. Suhuang antitussive capsule (SH Capsule), a classic traditional Chinese medicine prescription, has been used for the treatment of post-cold cough and cough variant asthma in the long clinical application. This study aims to investigate the effects and underlying mechanisms of SH Capsule on LPS-induced sputum obstruction in mice. The results showed that SH Capsule effectively promoted the tracheal phenol red output and mucociliary clearance. SH Capsule also alleviated airway inflammation-mediated mucin 5AC (MUC5AC) level through EGFR-ERK signaling. A further in vivo analysis showed that HGF inhibitor SU11274 abrogated the effects of SH Capsule on MUC5AC, well demonstrating that HGF was required for the beneficial effects of SH Capsule on expectoration in vivo. Moreover, SH Capsule promoted HGF secretion in a colon-dependent manner, which reached lung tissues via blood circulation. Collectively, this study provided new pharmacological data for clinical use of SH Capsule, and proposed a novel mechanism by which SH Capsule was pharmacologically promising for treating sputum obstruction.
Collapse
Affiliation(s)
- Xiyang Tong
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rongyao Liang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuning Jia
- Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd., Beijing, China.,Beijing University of Chemical Technology, Beijing, China
| | - Weiwei Qin
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chao Guo
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xingdong Wu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhen Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dong Chen
- Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd., Beijing, China
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Nicholas TP, Kavanagh TJ, Faustman EM, Altemeier WA. The Effects of Gene × Environment Interactions on Silver Nanoparticle Toxicity in the Respiratory System. Chem Res Toxicol 2019; 32:952-968. [PMID: 31124663 DOI: 10.1021/acs.chemrestox.8b00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silver nanoparticles (AgNP) are used in multiple applications but primarily in the manufacturing of antimicrobial products. AgNP toxicity in the respiratory system is well characterized, but few in vitro or in vivo studies have evaluated the effects of interactions between host genetic and acquired factors or gene × environment interactions (G × E) on AgNP toxicity in the respiratory system. The primary goal of this article is to review host genetic and acquired factors identified across in vitro and in vivo studies and prioritize those necessary for defining exposure limits to protect all populations. The impact of these exposures and the work being done to address the current limited protections are also discussed. Future research on G × E effects on AgNP toxicity is warranted and will assist with informing regulatory or recommended exposure limits that enforce special protections for all populations to AgNP exposures in occupational settings.
Collapse
Affiliation(s)
- Tyler P Nicholas
- Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98109 , United States
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98109 , United States
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences , University of Washington , Seattle , Washington 98109 , United States
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine , University of Washington , Seattle , Washington 98109 , United States
| |
Collapse
|
15
|
Wang X, An X, Wang X, Hu X, Bi J, Tong L, Yang D, Song Y, Bai C. Peroxiredoxin 6 knockout aggravates cecal ligation and puncture-induced acute lung injury. Int Immunopharmacol 2019; 68:252-258. [PMID: 30683539 DOI: 10.1016/j.intimp.2018.12.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/22/2018] [Accepted: 12/24/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND The aim of present study was to investigate the effects and mechanisms of peroxiredoxin (Prdx) 6 on cecal ligation and puncture (CLP) induced acute lung injury (ALI) in mice. METHODS The cecal of male Prdx 6 knockout and wildtype C57BL/6J mice were ligated and perforated. Stool was extruded to ensure wound patency. Two hours, 4 h, 8 h and 16 h after stimulation, the morphology, wet/dry ratio, protein concentration in bronchial alveolar lavage fluid (BALF) were measured to evaluate lung injury. Myeloperoxidase (MPO) activity, hydrogen peroxide (H2O2), malondialdehyde (MDA), total superoxide dismutase (SOD), xanthine oxidase (XOD), CuZn-SOD, total anti-oxidative capability (TAOC), glutathione peroxidase (GSH-PX), catalase (CAT) in lungs were measured by assay kits. The mRNA expression of lung tumor necrosis factor (TNF-α), interleukin (IL)-1β, and matrix metalloproteinases (MMP) 2 and 9 were tested by real-time RT-PCR. The nuclear factor (NF)-κB activity was measured by TransAM kit. RESULTS CLP-induced ALI was characterized by inflammation in morphology, increased wet/dry ratio, elevated protein concentration in BALF and higher level of MPO activity. The levels of H2O2, MDA, and XOD were significantly increased and SOD, CuZn-SOD, GSH-PX, CAT, and T-AOC were significantly decreased in lungs after CLP. The activity of NF-κB was significantly increased and subsequently, the mRNA expression of TNF-α, IL-1β and MMP2 and MMP9 were significantly increased after CLP. Those above injury parameters were more severe in Prdx 6 knockout mice than those in wildtype mice. CONCLUSIONS Prdx 6 knockout aggravated the CLP induced lung injury by augmenting oxidative stress, inflammation and matrix degradation partially through NF-κB pathway.
Collapse
Affiliation(s)
- Xiaocen Wang
- Department of Pulmonary Medicine, Zhongshan Hospital of Fudan University, Shanghai, PR China
| | - Xiaojing An
- Post-Doctoral Research Station, Zhongshan Hospital of Fudan University, Shanghai, PR China
| | - Xun Wang
- Department of Pulmonary Medicine, Zhongshan Hospital of Fudan University, Shanghai, PR China; Department of Pulmonary and Critical Care Medicine, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Jiangsu, PR China
| | - Xianglin Hu
- Department of Pulmonary Medicine, Zhongshan Hospital of Fudan University, Shanghai, PR China
| | - Jing Bi
- Department of Pulmonary Medicine, Zhongshan Hospital of Fudan University, Shanghai, PR China
| | - Ling Tong
- Department of Pulmonary Medicine, Zhongshan Hospital of Fudan University, Shanghai, PR China
| | - Dong Yang
- Department of Pulmonary Medicine, Zhongshan Hospital of Fudan University, Shanghai, PR China.
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital of Fudan University, Shanghai, PR China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital of Fudan University, Shanghai, PR China
| |
Collapse
|
16
|
Abstract
SIGNIFICANCE Peroxiredoxins (Prxs), a family of thiol-associated peroxidases, are purported to play a major role in sensing and managing hydrogen peroxide concentrations and transducing peroxide-derived signals. Recent Advances: Prxs can act as detoxifying factors and impart effects to cells that can be either sparing or suicidal. Advances have been made to address the qualitative changes in Prx function in response to quantitative changes in the signal level and to understand how Prx activity could be affected by their own substrates. Here we rationalize the basis for both positive and negative effects on signaling pathways and cell physiology, summarizing data from model organisms, including invertebrates. CRITICAL ISSUES Resolving the relationship between the promiscuous behavior of reactive oxygen species and the specificity of Prxs toward different targets in redox-sensitive signaling pathways is a key area of research. Attempts to understand Prx function and underlying mechanisms were conducted in vitro or in vivo under nonphysiological conditions, leaving the physiological relevance yet to be defined. Other issues: Why despite the high degree of homology and similarities in subcellular and tissue distribution between Prxs do they display differential effects on signaling? How is the specificity of post-translational protein modifications determined? Other than chaperone-like activity, how do hyperoxidized Prxs function? FUTURE DIRECTIONS Genetic models with mutated catalytic and resolving cysteines should be further exploited to dissect the functional significance of individual Prxs in their different states together with their alternative reducing partners. Such an analysis may then be extended to help identify Prx-specific targets.
Collapse
Affiliation(s)
- Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University , Dallas, Texas
| | - William C Orr
- Department of Biological Sciences, Southern Methodist University , Dallas, Texas
| |
Collapse
|
17
|
Iwayama K, Kimura J, Mishima A, Kusakabe A, Ohtaki KI, Tampo Y, Hayase N. Low concentrations of clarithromycin upregulate cellular antioxidant enzymes and phosphorylation of extracellular signal-regulated kinase in human small airway epithelial cells. J Pharm Health Care Sci 2018; 4:23. [PMID: 30186615 PMCID: PMC6120091 DOI: 10.1186/s40780-018-0120-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/04/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND It is well known that low-dose, long-term macrolide therapy is effective against chronic inflammatory airway diseases. Oxidative stress is considered to be a key pathogenesis factor in those diseases. However, the mechanism of action of low-dose, long-term macrolide therapy remains unclear. We have reported that clarithromycin (CAM), which is a representative macrolide antibiotic, could inhibit hydrogen peroxide (H2O2)-induced reduction of the glutathione (GSH)/glutathione disulfide (GSSG) ratio in human small airway epithelial cells (SAECs), via the maintenance of GSH levels through an effect on γ-glutamylcysteine synthetase (γ-GCS) expression. In this study, we examined the influence of CAM against H2O2-induced activities of cellular antioxidant enzymes and phosphorylated extracellular signal regulatory kinase (p-ERK) using SAECs, the main cells involved in chronic airway inflammatory diseases. METHODS SAECs were pretreated with CAM (1, 5, and 10 μM) for 72 h, and subsequently exposed to H2O2 (100 μM) for 0.5-2 h. Levels of GSH and GSSG, and activities of glutathione peroxidase (GPx)-1, glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), heme oxygenase (HO)-1 and p-ERK were assayed. mRNA expressions of GPx-1 and HO-1 were measured using the real-time reverse transcription polymerase chain reaction (RT-PCR). Tukey's multiple comparison test was used for analysis of statistical significance. RESULTS Pretreatment with low-dose (1 and 5 μM) CAM for 72 h inhibited H2O2-induced reductions of GPx-1, GR, SOD, CAT and HO-1 activities, and mRNA expressions of GPx-1 and HO-1, and improved the GSH/GSSG ratio. However, these alterations were not observed after pretreatment with high-dose (10 μM) CAM, which suppressed phosphorylation of cell proliferation-associated ERK to cause a significant (p < 0.01) decrease in cell viability. CONCLUSIONS CAM is efficacious against deterioration of cellular antioxidant enzyme activity caused by oxidative stress under low-dose, long-term treatment conditions. On the other hand, pretreatment with high-dose CAM suppressed phosphorylation of cell proliferation-associated ERK and decreased cell viability. The present study may provide additional evidence as to why low-dose, long-term administration of macrolides is effective for treating chronic inflammatory airway diseases.
Collapse
Affiliation(s)
- Kuninori Iwayama
- Department of Pharmacology and Therapeutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8590 Japan
- Department of Hospital Pharmacy and Pharmacology, Asahikawa Medical University Hospital, Asahikawa, 078-8510 Japan
| | - Junpei Kimura
- Department of Pharmacology and Therapeutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8590 Japan
- Department of Pharmacy, Nakamura Memorial Hospital, Sapporo, 060-8570 Japan
| | - Aya Mishima
- Department of Pharmacology and Therapeutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8590 Japan
- Department of Pharmacy, Kushiro Kojinkai Memorial Hospital, Kushiro, 085-0062 Japan
| | - Ayuko Kusakabe
- Department of Pharmacology and Therapeutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8590 Japan
- Department of Pharmacy, Shin-Sapporo Towakai Hospital, Sapporo, 004-0041 Japan
| | - Ko-ichi Ohtaki
- Department of Pharmacology and Therapeutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8590 Japan
- Department of Hospital Pharmacy and Pharmacology, Asahikawa Medical University Hospital, Asahikawa, 078-8510 Japan
| | - Yoshiko Tampo
- Department of Public and Health, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, 006-8590 Japan
| | - Nobumasa Hayase
- Department of Pharmacology and Therapeutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8590 Japan
| |
Collapse
|
18
|
Neutrophil extracellular traps promote lipopolysaccharide-induced airway inflammation and mucus hypersecretion in mice. Oncotarget 2018; 9:13276-13286. [PMID: 29568356 PMCID: PMC5862577 DOI: 10.18632/oncotarget.24022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/01/2017] [Indexed: 01/23/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) contributes to airway inflammation and mucus hypersecretion in chronic airway inflammatory diseases, such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). Neutrophil extracellular traps (NETs) are extracellular meshworks composed of DNA fibers and antimicrobial proteins. Although NET formation has been detected in COPD and CF patients, how NETs contribute to these diseases is poorly understood. This study was performed to clarify the effects and mechanisms of action of NETs in airway inflammation and mucus hypersecretion. We created a murine model of LPS-induced airway inflammation and mucus hypersecretion, and found that LPS-induced NET formation was degraded by aerosolized DNase I treatment in mice. Degradation of NETs by aerosolized DNase I reduced LPS-induced airway inflammation and mucus hypersecretion in mice, this reduction correlated with suppression of TLR4/NF-κB signaling pathway. More importantly, NETs promoted LPS-induced production of IL-1β, IL-6 and TNF-α in macrophages. These results suggest NET degradation using aerosolized DNase I is a potential new therapeutic strategy for treating COPD and CF.
Collapse
|