1
|
Carr JMJR, Koep J, Brewster LM, Getu A, Dizon JC, Isaak D, Steele A, Howe CA, Ainslie PN. Acute selective serotonin-reuptake inhibition elevates basal ventilation and attenuates the rebreathing ventilatory response, independent of cerebral perfusion. J Appl Physiol (1985) 2025; 138:592-602. [PMID: 39819056 DOI: 10.1152/japplphysiol.00751.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Serotonin (5-HT) is integral to signaling in areas of the brainstem controlling ventilation and is involved in central chemoreception. Selective serotonin reuptake inhibitors (SSRIs), used to effectively increase 5-HT concentrations, are commonly prescribed for depression. The effects of SSRIs on the control of breathing and the potential influence of cerebral blood flow (CBF) have not been directly assessed. We hypothesized that a single SSRI dose in healthy adults would not impact resting ventilation, global CBF, or brainstem blood flow reactivity to CO2 but would steepen the slope of the hypercapnic ventilatory response (HCVR). In 15 young, healthy adults (6 females, 25 [Formula: see text] 5 yr, 70 [Formula: see text] 10 kg, 172 [Formula: see text] 15 cm, 24 [Formula: see text] 4 kg/cm2), using a placebo-controlled, double-blind, randomized design, we assessed baseline cardiorespiratory and CBF (duplex ultrasound) responses to SSRI (40 mg citalopram), as well as to hyperoxic hypercapnic rebreathing (as an index of central chemoreception). Baseline measures of mean arterial pressure, heart rate, minute ventilation, CBF, and the pressures of end-tidal oxygen and carbon dioxide were all not influenced by SSRI. Likewise, the sum of blood flowing through both vertebral arteries (as an index of brainstem blood flow) during hypercapnia was also unchanged. In contrast, basal ventilation (during rebreathing following hyperventilation and during hyperoxia) was elevated from 9.5 [Formula: see text] 4.1 to 11.5 [Formula: see text] 5.5 L/min (interaction P = 0.023); and counter to our hypothesis, the central chemoreceptor-mediated ventilatory response to CO2 was reduced following SSRI from 7.5 [Formula: see text] 5.3 to 5.1 [Formula: see text] 4.1 L/min/mmHg (interaction P = 0.027). The implications of these findings in health and pathology remain to be determined.NEW & NOTEWORTHY Acute inhibition of serotonin reuptake with citalopram diminishes the ventilatory response to hyperoxic hypercapnic rebreathing, possibly indicating decreased sensitivity of the central chemoreceptors and respiratory control centers. Additionally, ventilation during minimal chemoreceptor activation-i.e., following hypocapnia during hyperoxia-is elevated, perhaps signifying an increased tonic activity of the respiratory control areas. These changes appear to be independent of brainstem blood flow. These findings may have implications for antidepressant drug use.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Jodie Koep
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - L Madden Brewster
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Ayechew Getu
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Jonah C Dizon
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Declan Isaak
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Andrew Steele
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| |
Collapse
|
2
|
Williams TB, Badariotti JI, Corbett J, Miller-Dicks M, Neupert E, McMorris T, Ando S, Parker MO, Thelwell RC, Causer AJ, Young JS, Mayes HS, White DK, de Carvalho FA, Tipton MJ, Costello JT. The effects of sleep deprivation, acute hypoxia, and exercise on cognitive performance: A multi-experiment combined stressors study. Physiol Behav 2024; 274:114409. [PMID: 37977251 DOI: 10.1016/j.physbeh.2023.114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Both sleep deprivation and hypoxia have been shown to impair executive function. Conversely, moderate intensity exercise is known to improve executive function. In a multi-experiment study, we tested the hypotheses that moderate intensity exercise would ameliorate any decline in executive function after i) three consecutive nights of partial sleep deprivation (PSD) (Experiment 1) and ii) the isolated and combined effects of a single night of total sleep deprivation (TSD) and acute hypoxia (Experiment 2). METHODS Using a rigorous randomised controlled crossover design, 12 healthy participants volunteered in each experiment (24 total, 5 females). In both experiments seven executive function tasks (2-choice reaction time, logical relations, manikin, mathematical processing, 1-back, 2-back, 3-back) were completed at rest and during 20 min semi-recumbent, moderate intensity cycling. Tasks were completed in the following conditions: before and after three consecutive nights of PSD and habitual sleep (Experiment 1) and in normoxia and acute hypoxia (FIO2 = 0.12) following one night of habitual sleep and one night of TSD (Experiment 2). RESULTS Although the effects of three nights of PSD on executive functions were inconsistent, one night of TSD (regardless of hypoxic status) reduced executive functions. Significantly, regardless of sleep or hypoxic status, executive functions are improved during an acute bout of moderate intensity exercise. CONCLUSION These novel data indicate that moderate intensity exercise improves executive function performance after both PSD and TSD, regardless of hypoxic status. The key determinants and/or mechanism(s) responsible for this improvement still need to be elucidated. Future work should seek to identify these mechanisms and translate these significant findings into occupational and skilled performance settings.
Collapse
Affiliation(s)
- Thomas B Williams
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Juan I Badariotti
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom; Department of Psychology, University of Portsmouth, Portsmouth, United Kingdom
| | - Jo Corbett
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Matt Miller-Dicks
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Emma Neupert
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Terry McMorris
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom; Department of Sport and Exercise Sciences, University of Chichester, Chichester, United Kingdom
| | - Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Matthew O Parker
- Surrey Sleep Research Centre, School of Biosciences, University of Surrey, Guildford, United Kingdom
| | - Richard C Thelwell
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Adam J Causer
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - John S Young
- National Horizons Centre, Teesside University, Darlington, United Kingdom; School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Harry S Mayes
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Danny K White
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | | | - Michael J Tipton
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Joseph T Costello
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom.
| |
Collapse
|
3
|
Caravita S, Faini A, Vignati C, Pelucchi S, Salvioni E, Cattadori G, Baratto C, Torlasco C, Contini M, Villani A, Malfatto G, Perger E, Lombardi C, Piperno A, Agostoni P, Parati G. Intravenous iron therapy improves the hypercapnic ventilatory response and sleep disordered breathing in chronic heart failure. Eur J Heart Fail 2022; 24:1940-1949. [PMID: 35867685 PMCID: PMC9804720 DOI: 10.1002/ejhf.2628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 01/09/2023] Open
Abstract
AIMS Intravenous iron therapy can improve symptoms in patients with heart failure, anaemia and iron deficiency. The mechanisms underlying such an improvement might involve chemoreflex sensing and nocturnal breathing patterns. METHODS AND RESULTS Patients with heart failure, reduced left ventricular ejection fraction, anaemia (haemoglobin <13 g/dl in men; <12 g/dl in women) and iron deficiency (ferritin <100 or 100-299 μg/L with transferrin saturation <20%) were 2:1 randomized to patient-tailored intravenous ferric carboxymaltose dose or placebo. Chemoreflex sensitivity cardiorespiratory sleep study, symptom assessment and cardiopulmonary exercise test were performed before and 2 weeks after the last treatment dose. Fifty-eight patients (38 active arm/20 placebo arm) completed the study. Intravenous iron was associated with less severe symptoms, higher haemoglobin (12.5 ± 1.4 vs. 11.7 ± 1.0 mg/dl, p < 0.05) and improved haematinic parameters. Ferric carboxymaltose improved the central hypercapnic ventilatory response (-25.8%, p < 0.05 vs. placebo), without changes in peripheral chemosensitivity. In particular, the central hypercapnic ventilatory responses passed from 4.6 ± 6.5 to 2.9 ± 2.9 L/min/mmHg after ferric carboxymaltose and from 4.4 ± 4.6 to 4.6 ± 3.9 L/min/mmHg after placebo (ptreatment*condition = 0.046). In patients presenting with sleep-related breathing disorder, apnoea-hypopnoea index was reduced with active treatment as compared to placebo (12 ± 11 vs. 19 ± 13 events/h, p < 0.05). After ferric carboxymaltose, but not after placebo, both peak oxygen uptake (VO2 ) increased (Δ1.1 ± 2.0 ml/kg/min, p < 0.05) and VO2 /workload slope was steeper (Δ0.67 ± 1.7 L/min/W, p < 0.01). CONCLUSIONS Intravenous ferric carboxymaltose improves the hypercapnic ventilatory response and sleep-related breathing disorders in patients with heart failure, anaemia and iron deficiency. These newly described findings, along with improved oxygen delivery to exercising muscles, likely contribute to the favourable effects of ferric carboxymaltose in anaemic patients with heart failure.
Collapse
Affiliation(s)
- Sergio Caravita
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly,Department of Management, Information and Production EngineeringUniversity of BergamoDalmineItaly
| | - Andrea Faini
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly
| | | | - Sara Pelucchi
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | | | | | - Claudia Baratto
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly
| | - Camilla Torlasco
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly
| | | | - Alessandra Villani
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly
| | - Gabriella Malfatto
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly
| | - Elisa Perger
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly
| | - Carolina Lombardi
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly,Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Alberto Piperno
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCSMilanItaly,Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
| | - Gianfranco Parati
- Department of Cardiovascular, Neural and Metabolic SciencesIstituto Auxologico Italiano IRCCS, Ospedale San LucaMilanItaly,Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| |
Collapse
|
4
|
Keough JRG, Tymko MM, Boulet LM, Jamieson AN, Day TA, Foster GE. Cardiorespiratory plasticity in humans following two patterns of acute intermittent hypoxia. Exp Physiol 2021; 106:1524-1534. [PMID: 34047414 DOI: 10.1113/ep089443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/25/2021] [Indexed: 01/02/2023]
Abstract
NEW FINDINGS What is the central question of this study? Do cardiorespiratory experience-dependent effects (EDEs) differ between two different stimulus durations of acute isocapnic intermittent hypoxia (IHx; 5-min vs. 90-s cycles between hypoxia and normoxia)? What is the main finding and its importance? There was long-term facilitation in ventilation and blood pressure in both IHx protocols, but there was no evidence of progressive augmentation or post-hypoxia frequency decline. Not all EDEs described in animal models translate to acute isocapnic IHx responses in humans, and cardiorespiratory responses to 5-min versus 90-s on/off IHx protocols are largely similar. ABSTRACT Peripheral respiratory chemoreceptors monitor breath-by-breath changes in arterial CO2 and O2 , and mediate ventilatory changes to maintain homeostasis. Intermittent hypoxia (IHx) elicits hypoxic ventilatory responses, with well-described experience-dependent effects (EDEs), derived mostly from animal work involving intermittent 5-min cycles of hypoxia and normoxia. These EDEs include post-hypoxia frequency decline (PHxFD), progressive augmentation (PA) and long-term facilitation (LTF). Comparisons of these EDEs between animal models and humans using similar IHx protocols are lacking. In addition, it is unknown whether shorter bouts of hypoxia, which may be more relevant to clinical conditions, elicit EDEs of similar magnitudes in humans. Respiratory (frequency, tidal volume and minute ventilation ( V ̇ I ) and cardiovascular (heart rate and mean arterial pressure (MAP)) variables were measured during and following two patterns of acute isocapnic IHx in 14 healthy human participants (four female): (1) 5 × 5 min and (2) 5 × 90 s on/off hypoxia. Participants' end-tidal P O 2 was clamped at 45 Torr during hypoxia and 100 Torr during normoxia. We found that (1) PHxFD and PA were not present in either IHx pattern (P > 0.14), (2) LTF was present in V ̇ I following both 5-min (P < 0.001) and 90-s isocapnic IHx trials (P < 0.001), and (3) LTF was present in MAP following 5-min isocapnic IHx (P < 0.001), and trended towards significance following 90-s IHx (P = 0.058). We demonstrate that acute isocapnic IHx alone may not elicit all of the EDEs that have been described in animal models. Additionally, ventilatory LTF occurred regardless of the length of hypoxia-normoxia cycles.
Collapse
Affiliation(s)
- Joanna R G Keough
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada.,Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Lindsey M Boulet
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Alenna N Jamieson
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Glen E Foster
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
5
|
Labrecque L, Drapeau A, Rahimaly K, Imhoff S, Brassard P. Dynamic cerebral autoregulation and cerebrovascular carbon dioxide reactivity in middle and posterior cerebral arteries in young endurance-trained women. J Appl Physiol (1985) 2021; 130:1724-1735. [PMID: 33955257 DOI: 10.1152/japplphysiol.00963.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The integrated responses regulating cerebral blood flow are understudied in women, particularly in relation to potential regional differences. In this study, we compared dynamic cerebral autoregulation (dCA) and cerebrovascular reactivity to carbon dioxide (CVRco2) in the middle (MCA) and posterior cerebral arteries (PCA) in 11 young endurance-trained women (age, 25 ± 4 yr; maximal oxygen uptake, 48.1 ± 4.1 mL·kg-1·min-1). dCA was characterized using a multimodal approach including a sit-to-stand and a transfer function analysis (TFA) of forced blood pressure oscillations (repeated squat-stands executed at 0.05 Hz and 0.10 Hz). The hyperoxic rebreathing test was utilized to characterize CVRco2. Upon standing, the percent reduction in blood velocity per percent reduction in mean arterial pressure during initial orthostatic stress (0-15 s after sit-to-stand), the onset of the regulatory response, and the rate of regulation did not differ between MCA and PCA (all P > 0.05). There was an ANOVA effect of anatomical location for TFA gain (P < 0.001) and a frequency effect for TFA phase (P < 0.001). However, normalized gain was not different between arteries (P = 0.18). Absolute CVRco2 was not different between MCA and PCA (1.55 ± 0.81 vs. 1.30 ± 0.49 cm·s-1/Torr, P = 0.26). Relative CVRco2 was 39% lower in the MCA (2.16 ± 1.02 vs. 3.00 ± 1.09%/Torr, P < 0.01). These findings indicate that the cerebral pressure-flow relationship appears to be similar between the MCA and the PCA in young endurance-trained women. The absence of regional differences in absolute CVRco2 could be women specific, although a direct comparison with a group of men will be necessary to address that issue.NEW & NOTEWORTHY Herein, we describe responses from two major mechanisms regulating cerebral blood flow with a special attention on regional differences in young endurance-trained women. The novel findings are that dynamic cerebral autoregulation and absolute cerebrovascular reactivity to carbon dioxide appear similar between the middle and posterior cerebral arteries of these young women.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Québec, Canada
| | - Audrey Drapeau
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Québec, Canada
| | - Kevan Rahimaly
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Québec, Canada
| | - Sarah Imhoff
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Québec, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Québec, Canada
| |
Collapse
|
6
|
Drapeau A, Anderson GK, Sprick JD. Cerebrovascular control: What's so base-ic about it? J Physiol 2021; 599:2787-2788. [PMID: 33675092 DOI: 10.1113/jp281398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/02/2021] [Indexed: 01/18/2023] Open
Affiliation(s)
- Audrey Drapeau
- Faculty of Medicine, Department of Kinesiology, Université Laval, QC, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, QC, Canada
| | - Garen K Anderson
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Justin D Sprick
- Division of Renal Medicine, Department of Medicine, Emory University Department of Medicine, Atlanta, GA, USA
| |
Collapse
|
7
|
Bruce CD, Vanden Berg ER, Pfoh JR, Steinback CD, Day TA. Prior oxygenation, but not chemoreflex responsiveness, determines breath-hold duration during voluntary apnea. Physiol Rep 2021; 9:e14664. [PMID: 33393725 PMCID: PMC7780234 DOI: 10.14814/phy2.14664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 01/24/2023] Open
Abstract
Central and peripheral respiratory chemoreceptors are stimulated during voluntary breath holding due to chemostimuli (i.e., hypoxia and hypercapnia) accumulating at the metabolic rate. We hypothesized that voluntary breath-hold duration (BHD) would be (a) positively related to the initial pressure of inspired oxygen prior to breath holding, and (b) negatively correlated with respiratory chemoreflex responsiveness. In 16 healthy participants, voluntary breath holds were performed under three conditions: hyperoxia (following five normal tidal breaths of 100% O2 ), normoxia (breathing room air), and hypoxia (following ~30-min of 13.5%-14% inspired O2 ). In addition, the hypoxic ventilatory response (HVR) was tested and steady-state chemoreflex drive (SS-CD) was calculated in room air and during steady-state hypoxia. We found that (a) voluntary BHD was positively related to initial oxygen status in a dose-dependent fashion, (b) the HVR was not correlated with BHD in any oxygen condition, and (c) SS-CD magnitude was not correlated with BHD in normoxia or hypoxia. Although chemoreceptors are likely stimulated during breath holding, they appear to contribute less to BHD compared to other factors such as volitional drive or lung volume.
Collapse
Affiliation(s)
- Christina D. Bruce
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryABCanada
- School of Health and Exercise SciencesCentre for Heart, Lung and Vascular HealthFaculty of Health and Social DevelopmentUniversity of British ColumbiaKelownaBCCanada
| | - Emily R. Vanden Berg
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryABCanada
- Department of BiologyFaculty of ScienceUniversity of VictoriaVictoriaBCCanada
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
| | - Jamie R. Pfoh
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryABCanada
| | - Craig D. Steinback
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
| | - Trevor A. Day
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryABCanada
| |
Collapse
|
8
|
Clément GR, Boyle RD, George KA, Nelson GA, Reschke MF, Williams TJ, Paloski WH. Challenges to the central nervous system during human spaceflight missions to Mars. J Neurophysiol 2020; 123:2037-2063. [DOI: 10.1152/jn.00476.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Space travel presents a number of environmental challenges to the central nervous system, including changes in gravitational acceleration that alter the terrestrial synergies between perception and action, galactic cosmic radiation that can damage sensitive neurons and structures, and multiple factors (isolation, confinement, altered atmosphere, and mission parameters, including distance from Earth) that can affect cognition and behavior. Travelers to Mars will be exposed to these environmental challenges for up to 3 years, and space-faring nations continue to direct vigorous research investments to help elucidate and mitigate the consequences of these long-duration exposures. This article reviews the findings of more than 50 years of space-related neuroscience research on humans and animals exposed to spaceflight or analogs of spaceflight environments, and projects the implications and the forward work necessary to ensure successful Mars missions. It also reviews fundamental neurophysiology responses that will help us understand and maintain human health and performance on Earth.
Collapse
Affiliation(s)
| | - Richard D. Boyle
- National Aeronautics and Space Administration, Ames Research Center, Moffett Field, California
| | | | - Gregory A. Nelson
- Division of Biomedical Engineering Sciences, School of Medicine Loma Linda University, Loma Linda, California
| | - Millard F. Reschke
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| | - Thomas J. Williams
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| | - William H. Paloski
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| |
Collapse
|
9
|
Burykh EA. The Problem of Assessing Individual Sensitivity and Tolerance to Hypoxia in Animals and Humans. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019050016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|