1
|
Skow RJ, Brothers RM, Claassen JAHR, Day TA, Rickards CA, Smirl JD, Brassard P. On the use and misuse of cerebral hemodynamics terminology using Transcranial Doppler ultrasound: a call for standardization. Am J Physiol Heart Circ Physiol 2022; 323:H350-H357. [PMID: 35839156 DOI: 10.1152/ajpheart.00107.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebral hemodynamics (e.g., cerebral blood flow) can be measured and quantified using many different methods, with Transcranial Doppler ultrasound (TCD) being one of the most commonly utilized approaches. In human physiology, the terminology used to describe metrics of cerebral hemodynamics are inconsistent, and in some instances technically inaccurate; this is especially true when evaluating, reporting, and interpreting measures from TCD. Therefore, this perspectives article presents recommended terminology when reporting cerebral hemodynamic data. We discuss the current use and misuse of the terminology in the context of using TCD to measure and quantify cerebral hemodynamics and present our rationale and consensus on the terminology that we recommend moving forward. For example, one recommendation is to discontinue use of the term "cerebral blood flow velocity" in favor of "cerebral blood velocity" with precise indication of the vessel of interest. We also recommend clarity when differentiating between discrete cerebrovascular regulatory mechanisms, namely cerebral autoregulation, neurovascular coupling, and cerebrovascular reactivity. This will be a useful guide for investigators in the field of cerebral hemodynamics research.
Collapse
Affiliation(s)
- Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Caroline A Rickards
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Jonathan D Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Canada
| |
Collapse
|
2
|
Milloy KM, White MG, Chicilo JOC, Cummings KJ, Pfoh JR, Day TA. Assessing central and peripheral respiratory chemoreceptor interaction in humans. Exp Physiol 2022; 107:1081-1093. [PMID: 35766127 DOI: 10.1113/ep089983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 06/16/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? We investigated the interaction between central and peripheral respiratory chemoreceptors in healthy, awake human participants by (a) using a background of step increases in steady-state normoxic fraction of inspired carbon dioxide to alter central chemoreceptor activation and (b) using the transient hypoxia test to target the peripheral chemoreceptors. What is the main finding and its importance? Our data suggests that the central-peripheral respiratory chemoreceptor interaction is additive in minute ventilation and respiratory rate, but hypoadditive in tidal volume. Our study adds important new data in reconciling chemoreceptor interaction in awake healthy humans, and is consistent with previous reports of simple addition in intact rodents and humans. ABSTRACT Arterial blood gas levels are maintained through respiratory chemoreflexes, mediated by central (CCR) in the CNS and peripheral (PCR) chemoreceptors located in the carotid bodies. The interaction between central and peripheral chemoreceptors is controversial, and few studies have investigated this interaction in awake healthy humans, in part due to methodological challenges. We investigated the interaction between the CCRs and PCRs in healthy humans using a transient hypoxia test (three consecutive breaths of 100% N2 ; TT-HVR), which targets the stimulus and temporal domain specificity of the PCRs. TT-HVRs were superimposed upon three randomized background levels of steady-state inspired fraction of normoxic CO2 (FI CO2 ; 0, 0.02 and 0.04). Chemostimuli (calculated oxygen saturation; ScO2 ) and respiratory variable responses (respiratory rate, inspired tidal volume and ventilation; RR , VTI , V̇I ), were averaged from all three TT-HVR trials at each FI CO2 level. Responses were assessed as (a) a change from BL (delta; ∆) and (b) indexed against ∆ScO2 . Aside from a significantly lower ∆VTI response in 0.04 FI CO2 (P = 0.01), the hypoxic rate responses (∆RR or ∆RR /∆ScO2 ; P = 0.46, P = 0.81), hypoxic tidal volume response (∆VTI /∆ScO2 ; P = 0.08) and the hypoxic ventilatory responses (∆V̇I and (∆V̇I /∆ScO2 ; P = 0.09 and P = 0.31) were not significantly different across FI CO2 trials. Our data suggests simple addition between central and peripheral chemoreceptors in V̇I , which is mediated through simple addition in RR responses, but hypo-addition in VTI responses. Our study adds important new data in reconciling chemoreceptor interaction in awake healthy humans, and is consistent with previous reports of simple addition in intact rodents and humans. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kristin M Milloy
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | - Matthew G White
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | - Janelle O C Chicilo
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | | | - Jamie R Pfoh
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| |
Collapse
|