1
|
Manferdelli G, Narang BJ, Bourdillon N, Debevec T, Millet GP. Baroreflex sensitivity is blunted in hypoxia independently of changes in inspired carbon dioxide pressure in prematurely born male adults. Physiol Rep 2024; 12:e15857. [PMID: 38172085 PMCID: PMC10764294 DOI: 10.14814/phy2.15857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024] Open
Abstract
Premature birth may result in specific cardiovascular responses to hypoxia and hypercapnia, that might hamper high-altitude acclimatization. This study investigated the consequences of premature birth on baroreflex sensitivity (BRS) under hypoxic, hypobaric and hypercapnic conditions. Seventeen preterm born males (gestational age, 29 ± 1 weeks), and 17 age-matched term born adults (40 ± 0 weeks) underwent consecutive 6-min stages breathing different oxygen and carbon dioxide concentrations at both sea-level and high-altitude (3375 m). Continuous blood pressure and ventilatory parameters were recorded in normobaric normoxia (NNx), normobaric normoxic hypercapnia (NNx + CO2 ), hypobaric hypoxia (HHx), hypobaric normoxia (HNx), hypobaric normoxia hypercapnia (HNx + CO2 ), and hypobaric hypoxia with end-tidal CO2 clamped at NNx value (HHx + clamp). BRS was assessed using the sequence method. Across all conditions, BRS was lower in term born compared to preterm (13.0 ± 7.5 vs. 21.2 ± 8.8 ms⋅mmHg-1 , main group effect: p < 0.01) participants. BRS was lower in HHx compared to NNx in term born (10.5 ± 4.9 vs. 16.0 ± 6.0 ms⋅mmHg-1 , p = 0.05), but not in preterm (27.3 ± 15.7 vs. 17.6 ± 8.3 ms⋅mmHg-1 , p = 0.43) participants, leading to a lower BRS in HHx in term born compared to preterm (p < 0.01). In conclusion, this study reports a blunted response of BRS during acute high-altitude exposure without any influence of changes in inspired CO2 in healthy prematurely born adults.
Collapse
Affiliation(s)
| | - Benjamin J. Narang
- Department of Automation, Biocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
- Faculty of SportUniversity of LjubljanaLjubljanaSlovenia
| | | | - Tadej Debevec
- Department of Automation, Biocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
- Faculty of SportUniversity of LjubljanaLjubljanaSlovenia
| | | |
Collapse
|
2
|
Hubbard CD, Bates ML, Lovering AT, Duke JW. Consequences of Preterm Birth: Knowns, Unknowns, and Barriers to Advancing Cardiopulmonary Health. Integr Comp Biol 2023; 63:693-704. [PMID: 37253617 PMCID: PMC10503472 DOI: 10.1093/icb/icad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023] Open
Abstract
Preterm birth occurs in 10% of all live births and creates challenges to neonatal life, which persist into adulthood. Significant previous work has been undertaken to characterize and understand the respiratory and cardiovascular sequelae of preterm birth, which are present in adulthood, i.e., "late" outcomes. However, many gaps in knowledge are still present and there are several challenges that will make filling these gaps difficult. In this perspective we discuss the obstacles of studying adults born preterm, including (1) the need for invasive (direct) measures of physiologic function; (2) the need for multistate, multinational, and diverse cohorts; (3) lack of socialized medicine in the United States; (4) need for detailed and better-organized birth records; and (5) transfer of neonatal and pediatric knowledge to adult care physicians. We conclude with a discussion on the "future" of studying preterm birth in regards to what may happen to these individuals as they approach middle and older age and how the improvements in perinatal and postnatal care may be changing the phenotypes observed in adults born preterm on or after the year 2000.
Collapse
Affiliation(s)
- Colin D Hubbard
- Department of Biological Sciences, Northern Arizona University, 86011, Flagstaff, AZ, USA
| | - Melissa L Bates
- Department of Health and Human Physiology, University of Iowa, 52242, Iowa City, IA, USA
- Department of Internal Medicine and Pediatrics, University of Iowa, 52242, Iowa City, IA, USA
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, 97403, Eugene, OR, USA
| | - Joseph W Duke
- Department of Biological Sciences, Northern Arizona University, 86011, Flagstaff, AZ, USA
| |
Collapse
|
3
|
Debevec T, Narang BJ, Manferdelli G, Millet GP. Premature birth: a neglected consideration for altitude adaptation. J Appl Physiol (1985) 2022; 133:975-978. [PMID: 35708701 DOI: 10.1152/japplphysiol.00201.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Tadej Debevec
- Faculty of Sport, grid.8954.0University of Ljubljana, Ljubljana, Slovenia
| | - Benjamin J Narang
- Department of Automation, Biocybernetics, and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Giorgio Manferdelli
- Institute of Sport Sciences, grid.9851.5University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
4
|
Deutsch L, Debevec T, Millet GP, Osredkar D, Opara S, Šket R, Murovec B, Mramor M, Plavec J, Stres B. Urine and Fecal 1H-NMR Metabolomes Differ Significantly between Pre-Term and Full-Term Born Physically Fit Healthy Adult Males. Metabolites 2022; 12:metabo12060536. [PMID: 35736470 PMCID: PMC9228004 DOI: 10.3390/metabo12060536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Preterm birth (before 37 weeks gestation) accounts for ~10% of births worldwide and remains one of the leading causes of death in children under 5 years of age. Preterm born adults have been consistently shown to be at an increased risk for chronic disorders including cardiovascular, endocrine/metabolic, respiratory, renal, neurologic, and psychiatric disorders that result in increased death risk. Oxidative stress was shown to be an important risk factor for hypertension, metabolic syndrome and lung disease (reduced pulmonary function, long-term obstructive pulmonary disease, respiratory infections, and sleep disturbances). The aim of this study was to explore the differences between preterm and full-term male participants' levels of urine and fecal proton nuclear magnetic resonance (1H-NMR) metabolomes, during rest and exercise in normoxia and hypoxia and to assess general differences in human gut-microbiomes through metagenomics at the level of taxonomy, diversity, functional genes, enzymatic reactions, metabolic pathways and predicted gut metabolites. Significant differences existed between the two groups based on the analysis of 1H-NMR urine and fecal metabolomes and their respective metabolic pathways, enabling the elucidation of a complex set of microbiome related metabolic biomarkers, supporting the idea of distinct host-microbiome interactions between the two groups and enabling the efficient classification of samples; however, this could not be directed to specific taxonomic characteristics.
Collapse
Affiliation(s)
- Leon Deutsch
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.D.); (S.O.)
| | - Tadej Debevec
- Faculty of Sports, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Gregoire P. Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland;
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children’s Hospital, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Simona Opara
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.D.); (S.O.)
| | - Robert Šket
- Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Boštjan Murovec
- Faculty of Electrical Engineering, University of Ljubljana, Jamova 2, SI-1000 Ljubljana, Slovenia;
| | - Minca Mramor
- Department of Infectious Diseases, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Janez Plavec
- National Institute of Chemistry, NMR Center, SI-1000 Ljubljana, Slovenia;
| | - Blaz Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.D.); (S.O.)
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Institute of Sanitary Engineering, Faculty of Civil and Geodetic Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-4156-7633
| |
Collapse
|