1
|
Song C, Liu R, Fang Y, Gu H, Wang Y. Developing functional hydrogels for treatment of oral diseases. SMART MEDICINE 2024; 3:e20240020. [PMID: 39420948 PMCID: PMC11425053 DOI: 10.1002/smmd.20240020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/29/2024] [Indexed: 10/19/2024]
Abstract
Oral disease is a severe healthcare challenge that diminishes people's quality of life. Functional hydrogels with suitable biodegradability, biocompatibility, and tunable mechanical properties have attracted remarkable interest and have been developed for treating oral diseases. In this review, we present up-to-date research on hydrogels for the management of dental caries, endodontics, periapical periodontitis, and periodontitis, depending on the progression of dental diseases. The strategies of hydrogels for treating oral mucosal diseases and salivary gland diseases are then classified. After that, we focus on the application of hydrogels related to tumor therapy and tissue defects. Finally, the review prospects the restrictions and the perspectives on the utilization of hydrogels in oral disease treatment. We believe this review will promote the advancement of more amicable, functional and personalized approaches for oral diseases.
Collapse
Affiliation(s)
- Chuanhui Song
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Rui Liu
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yile Fang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Hongcheng Gu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yu Wang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
2
|
Rose SC, Larsen M, Xie Y, Sharfstein ST. Salivary Gland Bioengineering. Bioengineering (Basel) 2023; 11:28. [PMID: 38247905 PMCID: PMC10813147 DOI: 10.3390/bioengineering11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Salivary gland dysfunction affects millions globally, and tissue engineering may provide a promising therapeutic avenue. This review delves into the current state of salivary gland tissue engineering research, starting with a study of normal salivary gland development and function. It discusses the impact of fibrosis and cellular senescence on salivary gland pathologies. A diverse range of cells suitable for tissue engineering including cell lines, primary salivary gland cells, and stem cells are examined. Moreover, the paper explores various supportive biomaterials and scaffold fabrication methodologies that enhance salivary gland cell survival, differentiation, and engraftment. Innovative engineering strategies for the improvement of vascularization, innervation, and engraftment of engineered salivary gland tissue, including bioprinting, microfluidic hydrogels, mesh electronics, and nanoparticles, are also evaluated. This review underscores the promising potential of this research field for the treatment of salivary gland dysfunction and suggests directions for future exploration.
Collapse
Affiliation(s)
- Stephen C. Rose
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA;
| | - Yubing Xie
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Susan T. Sharfstein
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| |
Collapse
|
3
|
Song Y, Sharipol A, Uchida H, Ingalls MH, Piraino L, Mereness JA, Moyston T, DeLouise LA, Ovitt CE, Benoit DS. Encapsulation of Primary Salivary Gland Acinar Cell Clusters and Intercalated Ducts (AIDUCs) within Matrix Metalloproteinase (MMP)-Degradable Hydrogels to Maintain Tissue Structure and Function. Adv Healthc Mater 2022; 11:e2101948. [PMID: 34994104 PMCID: PMC8986612 DOI: 10.1002/adhm.202101948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/08/2021] [Indexed: 12/13/2022]
Abstract
Progress in the development of salivary gland regenerative strategies is limited by poor maintenance of the secretory function of salivary gland cells (SGCs) in vitro. To reduce the precipitous loss of secretory function, a modified approach to isolate intact acinar cell clusters and intercalated ducts (AIDUCs), rather than commonly used single cell suspension, is investigated. This isolation approach yields AIDUCs that maintain many of the cell-cell and cell-matrix interactions of intact glands. Encapsulation of AIDUCs in matrix metalloproteinase (MMP)-degradable PEG hydrogels promotes self-assembly into salivary gland mimetics (SGm) with acinar-like structure. Expression of Mist1, a transcription factor associated with secretory function, is detectable throughout the in vitro culture period up to 14 days. Immunohistochemistry also confirms expression of acinar cell markers (NKCC1, PIP and AQP5), duct cell markers (K7 and K5), and myoepithelial cell markers (SMA). Robust carbachol and ATP-stimulated calcium flux is observed within the SGm for up to 14 days after encapsulation, indicating that secretory function is maintained. Though some acinar-to-ductal metaplasia is observed within SGm, it is reduced compared to previous reports. In conclusion, cell-cell interactions maintained within AIDUCs together with the hydrogel microenvironment may be a promising platform for salivary gland regenerative strategies.
Collapse
Affiliation(s)
- Yuanhui Song
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - Azmeer Sharipol
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - Hitoshi Uchida
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Matthew H. Ingalls
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Lindsay Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Dermatology, University of Rochester, Rochester, NY, USA
| | - Jared A. Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Tracey Moyston
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Lisa A. DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Dermatology, University of Rochester, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
| | - Catherine E. Ovitt
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
| | - Danielle S.W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| |
Collapse
|
4
|
Dos Santos HT, Nam K, Brown CT, Dean SM, Lewis S, Pfeifer CS, Lei P, Petris MJ, Andreadis ST, Baker OJ. Trimers Conjugated to Fibrin Hydrogels Promote Salivary Gland Function. J Dent Res 2020; 100:268-275. [PMID: 33043768 DOI: 10.1177/0022034520964784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
New strategies for tissue engineering have great potential for restoring and revitalizing impaired tissues and organs, including the use of smart hydrogels that can be modified to enhance organization and functionality of the salivary glands. For instance, monomers of laminin-111 peptides chemically conjugated to fibrin hydrogel (L1pM-FH) promote cell cluster formation in vitro and salivary gland regeneration in vivo when compared with fibrin hydrogel (FH) alone; however, L1pM-FH produce only weak expression of acinar differentiation markers in vivo (e.g., aquaporin-5 and transmembrane protein 16). Since previous studies demonstrated that a greater impact can be achieved when trimeric forms were used as compared with monomeric or dimeric forms, we investigated the extent to which trimers of laminin-111 chemically conjugated to FH (L1pT-FH) can increase the expression of acinar differentiation markers and elevate saliva secretion. In vitro studies using Par-C10 acinar cells demonstrated that when compared with L1pM-FH, L1pT-FH induced similar levels of acinar-like cell clustering, polarization, lumen formation, and calcium signaling. To assess the performance of the trimeric complex in vivo, we compared the ability of L1pM-FH and L1pT-FH to increase acinar differentiation markers and restore saliva flow rate in a salivary gland wound model of C57BL/6 mice. Our results show that L1pT-FH applied to wounded mice significantly improved the expression of the acinar differentiation markers and saliva secretion when compared with the monomeric form. Together, these positive effects of L1pT-FH warrant its future testing in additional models of hyposalivation with the ultimate goal of applying this technology in humans.
Collapse
Affiliation(s)
- H T Dos Santos
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - K Nam
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - C T Brown
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - S M Dean
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - S Lewis
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - C S Pfeifer
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - P Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - M J Petris
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA.,Department of Ophthalmology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA.,Department of Biochemistry, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - S T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.,Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.,Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - O J Baker
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA.,Department of Biochemistry, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| |
Collapse
|