1
|
Umezawa A, Fukuda A, Horikawa R, Uchida H, Enosawa S, Oishi Y, Nakamura N, Sasaki K, Yanagi Y, Shimizu S, Nakao T, Kodama T, Sakamoto S, Hayakawa I, Akiyama S, Saku N, Miyata S, Ite K, Javaregowda PK, Toyoda M, Nonaka H, Nakamura K, Ito Y, Fukuhara Y, Miyazaki O, Nosaka S, Nakabayashi K, Haga C, Yoshioka T, Masuda A, Ohkura T, Yamazaki-Inoue M, Machida M, Abutani-Sakamoto R, Miyajima S, Akutsu H, Matsubara Y, Igarashi T, Kasahara M. First-in-human clinical study of an embryonic stem cell product for urea cycle disorders. Stem Cell Res Ther 2025; 16:120. [PMID: 40050977 PMCID: PMC11887382 DOI: 10.1186/s13287-025-04162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/21/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND This study assesses the safety and efficacy of hepatocyte-like cell (HLC) infusion therapy derived from human embryonic stem cells as bridging therapy for neonatal-onset urea cycle disorders (UCD). The research includes both preclinical and clinical evaluations to determine the feasibility of HLC infusion as a therapeutic option for safer pediatric liver transplantation. METHODS Preclinical studies were conducted to validate the safety, biodistribution, and ammonia metabolism capabilities of HLCs using SCID mice models of UCD and extensive animal studies. In the clinical trial, five neonates with UCD received HLC infusions, intending to maintain metabolic stability and exceed a target weight of over 6 kg, which is considered necessary for safer liver transplantation. RESULTS Preclinical studies demonstrated that HLCs successfully engrafted in the liver without adverse migration or tumor formation and effectively elongated survival. Clinically, all five neonates exceeded the target weight of 6 kg while maintaining metabolic stability and successfully bridging to transplantation. Post-transplantation follow-up revealed stable growth, metabolic control, and no neurological complications. CONCLUSIONS The combined preclinical and clinical findings support HLC infusion as a viable bridge therapy for neonates with UCD, providing metabolic support to achieve safer weight thresholds for transplantation. While promising, careful monitoring remains essential, particularly for potential complications such as thrombus formation. TRIAL REGISTRATION jRCT, jRCT1090220412. Registered on 27 February 2019, https://jrct.niph.go.jp/en-latest-detail/jRCT1090220412 (originally registered in JMACCT (JMA-IIA00412)).
Collapse
Affiliation(s)
- Akihiro Umezawa
- National Center for Child Health and Development Research Institute, Setagaya, Japan.
- Department of Advanced Pediatric Medicine (National Center for Child Health and Development), Tohoku University School of Medicine, Sendai, Japan.
| | - Akinari Fukuda
- National Center for Child Health and Development, Setagaya, Japan
| | - Reiko Horikawa
- National Center for Child Health and Development, Setagaya, Japan
| | - Hajime Uchida
- National Center for Child Health and Development, Setagaya, Japan
| | - Shin Enosawa
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Yoshie Oishi
- National Center for Child Health and Development, Setagaya, Japan
| | - Naoko Nakamura
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Kengo Sasaki
- National Center for Child Health and Development, Setagaya, Japan
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Yanagi
- National Center for Child Health and Development, Setagaya, Japan
| | - Seiichi Shimizu
- National Center for Child Health and Development, Setagaya, Japan
| | - Toshimasa Nakao
- National Center for Child Health and Development, Setagaya, Japan
| | - Tasuku Kodama
- National Center for Child Health and Development, Setagaya, Japan
| | - Seisuke Sakamoto
- National Center for Child Health and Development, Setagaya, Japan
| | - Itaru Hayakawa
- National Center for Child Health and Development, Setagaya, Japan
| | - Saeko Akiyama
- National Center for Child Health and Development Research Institute, Setagaya, Japan
- Department of Advanced Pediatric Medicine (National Center for Child Health and Development), Tohoku University School of Medicine, Sendai, Japan
| | - Noriaki Saku
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Shoko Miyata
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Kenta Ite
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Palaksha Kanive Javaregowda
- National Center for Child Health and Development Research Institute, Setagaya, Japan
- SDM Research Institute for Biomedical Sciences, A Constituent Unit of Shri Dharmasthala Manjunatheshwara University, Dharwad, India
| | - Masashi Toyoda
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Hidenori Nonaka
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Kazuaki Nakamura
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Yoshikazu Ito
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | | | - Osamu Miyazaki
- National Center for Child Health and Development, Setagaya, Japan
| | - Shunsuke Nosaka
- National Center for Child Health and Development, Setagaya, Japan
| | - Kazuhiko Nakabayashi
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Chizuko Haga
- National Center for Child Health and Development, Setagaya, Japan
| | - Takako Yoshioka
- National Center for Child Health and Development, Setagaya, Japan
| | - Akira Masuda
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Takashi Ohkura
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Mayu Yamazaki-Inoue
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Masakazu Machida
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Rie Abutani-Sakamoto
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Shoko Miyajima
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Hidenori Akutsu
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Yoichi Matsubara
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Takashi Igarashi
- National Center for Child Health and Development Research Institute, Setagaya, Japan
| | - Mureo Kasahara
- National Center for Child Health and Development, Setagaya, Japan.
| |
Collapse
|
2
|
Chen J, Kataoka O, Tsuchiya K, Oishi Y, Takao A, Huang YC, Komura H, Akiyama S, Itou R, Inui M, Enosawa S, Akutsu H, Komura M, Fuchimoto Y, Umezawa A. Automated xeno-free chondrogenic differentiation from human embryonic stem cells: Enhancing efficiency and ensuring high-quality mass production. Regen Ther 2024; 26:889-900. [PMID: 39822341 PMCID: PMC11735927 DOI: 10.1016/j.reth.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/22/2024] [Accepted: 09/23/2024] [Indexed: 01/19/2025] Open
Abstract
Introduction Repairing damaged cartilage poses significant challenges, particularly in cases of congenital cartilage defects such as microtia or congenital tracheal stenosis, or as a consequence of traumatic injury, as the regenerative potential of cartilage is inherently limited. Stem cell therapy and tissue engineering offer promising approaches to overcome these limitations in cartilage healing. However, the challenge lies in the size of cartilage-containing organs, which necessitates a large quantity of cells to fill the damaged areas. Therefore, pluripotent stem cells that can proliferate indefinitely are highly desirable as a cell source. This study aims to delineate the differentiation conditions for cartilage derived from human embryonic stem cells (ESCs) and to develop an automated cell culture system to facilitate mass production for therapeutic applications. Methods Cartilage cell sheets were derived from human ESCs (SEES2, clinical trial-compatible line) by forming embryoid bodies (EBs) with either conventional manual culture or a benchtop multi-pipetter and an automated medium exchange integrated cell incubator, using xeno-free media. Cell sheets were implanted into the subcutaneous tissue of immunodeficient NOG mice to obtain cartilage tissue. The properties of cartilage tissues were examined by histological staining and quantitative PCR analysis. Results We have optimized an efficient xeno-free system for cartilage production with the conventional culture method and successfully transitioned to an automated system. Differentiated cartilage was histologically uniform with cartilage-specific elasticity and strength. The cartilage tissues were stained by Alcian blue, safranin O, and toluidine blue, and quantitative PCR showed an increase in differentiation markers such as ACAN, COL2A1, and Vimentin. Automation significantly enhanced the efficiency of human ESC-derived chondrocyte differentiation. The number of constituent cells within EBs and the seeding density of EBs were identified as key factors influencing chondrogenic differentiation efficiency. By automating the process of chondrogenic differentiation, we achieved scalable production of chondrocytes. Conclusions By integrating the differentiation protocol with an automated cell culture system, there is potential to produce cartilage of sufficient size for clinical applications in humans. The resulting cartilage tissue holds promise for clinical use in repairing organs such as the trachea, joints, ears, and nose.
Collapse
Affiliation(s)
- JunLong Chen
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Sendai, Japan
- Division of Tissue Engineering, The University of Tokyo Hospital, Japan
| | - Oki Kataoka
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Kazeto Tsuchiya
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Yoshie Oishi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Ayumi Takao
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Yen-Chih Huang
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
- Division of Tissue Engineering, The University of Tokyo Hospital, Japan
- Department of Tissue Stem Cell&Dental Life Science, Graduate School of Medicine, The University of Tokyo, Japan
- Oral and Maxillofacial Surgery, Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hiroko Komura
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
- Division of Tissue Engineering, The University of Tokyo Hospital, Japan
- Department of Tissue Stem Cell&Dental Life Science, Graduate School of Medicine, The University of Tokyo, Japan
| | - Saeko Akiyama
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Ren Itou
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Masafumi Inui
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Shin Enosawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Makoto Komura
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
- Division of Tissue Engineering, The University of Tokyo Hospital, Japan
- Department of Tissue Stem Cell&Dental Life Science, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yasushi Fuchimoto
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
- Department of Pediatric Surgery, International University of Health and Welfare School of Medicine, 852, Chiba, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Feng L, Wang Y, Fu Y, Li T, He G. Stem Cell-Based Strategies: The Future Direction of Bioartificial Liver Development. Stem Cell Rev Rep 2024; 20:601-616. [PMID: 38170319 DOI: 10.1007/s12015-023-10672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Acute liver failure (ALF) results from severe liver damage or end-stage liver disease. It is extremely fatal and causes serious health and economic burdens worldwide. Once ALF occurs, liver transplantation (LT) is the only definitive and recommended treatment; however, LT is limited by the scarcity of liver grafts. Consequently, the clinical use of bioartificial liver (BAL) has been proposed as a treatment strategy for ALF. Human primary hepatocytes are an ideal cell source for these methods. However, their high demand and superior viability prevent their widespread use. Hence, finding alternatives that meet the seed cell quality and quantity requirements is imperative. Stem cells with self-renewing, immunogenic, and differentiative capacities are potential cell sources. MSCs and its secretomes encompass a spectrum of beneficial properties, such as anti-inflammatory, immunomodulatory, anti-ROS (reactive oxygen species), anti-apoptotic, pro-metabolomic, anti-fibrogenesis, and pro-regenerative attributes. This review focused on the recent status and future directions of stem cell-based strategies in BAL for ALF. Additionally, we discussed the opportunities and challenges associated with promoting such strategies for clinical applications.
Collapse
Affiliation(s)
- Lei Feng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| | - Yi Wang
- Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yu Fu
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ting Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510140, Guangdong, China.
| | - Guolin He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
4
|
Chen J, Horiuchi S, Kuramochi S, Kawasaki T, Kawasumi H, Akiyama S, Arai T, Morinaga K, Kimura T, Kiyono T, Akutsu H, Ishida S, Umezawa A. Human intestinal organoid-derived PDGFRα + mesenchymal stroma enables proliferation and maintenance of LGR4 + epithelial stem cells. Stem Cell Res Ther 2024; 15:16. [PMID: 38229108 PMCID: PMC10792855 DOI: 10.1186/s13287-023-03629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Intestinal epithelial cells derived from human pluripotent stem cells (hPSCs) are generally maintained and cultured as organoids in vitro because they do not exhibit adhesion when cultured. However, the three-dimensional structure of organoids makes their use in regenerative medicine and drug discovery difficult. Mesenchymal stromal cells are found near intestinal stem cells in vivo and provide trophic factors to regulate stem cell maintenance and proliferation, such as BMP inhibitors, WNT, and R-spondin. In this study, we aimed to use mesenchymal stromal cells isolated from hPSC-derived intestinal organoids to establish an in vitro culture system that enables stable proliferation and maintenance of hPSC-derived intestinal epithelial cells in adhesion culture. METHODS We established an isolation protocol for intestinal epithelial cells and mesenchymal stromal cells from hPSCs-derived intestinal organoids and a co-culture system for these cells. We then evaluated the intestinal epithelial cells and mesenchymal stromal cells' morphology, proliferative capacity, chromosomal stability, tumorigenicity, and gene expression profiles. We also evaluated the usefulness of the cells for pharmacokinetic and toxicity studies. RESULTS The proliferating intestinal epithelial cells exhibited a columnar form, microvilli and glycocalyx formation, cell polarity, and expression of drug-metabolizing enzymes and transporters. The intestinal epithelial cells also showed barrier function, transporter activity, and drug-metabolizing capacity. Notably, small intestinal epithelial stem cells cannot be cultured in adherent culture without mesenchymal stromal cells and cannot replaced by other feeder cells. Organoid-derived mesenchymal stromal cells resemble the trophocytes essential for maintaining small intestinal epithelial stem cells and play a crucial role in adherent culture. CONCLUSIONS The high proliferative expansion, productivity, and functionality of hPSC-derived intestinal epithelial cells may have potential applications in pharmacokinetic and toxicity studies and regenerative medicine.
Collapse
Affiliation(s)
- JunLong Chen
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Shinichiro Horiuchi
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Japan
| | - So Kuramochi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Tomoyuki Kawasaki
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Hayato Kawasumi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Saeko Akiyama
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Tomoki Arai
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Kenichi Morinaga
- 1st Section, 1st Development Department, Food and Healthcare Business Development Unit, Business Development Division, Research & Business Development Center, Dai Nippon Printing Co., Ltd., Tokyo, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of BioSciences, Kitasato University School of Science, Kanagawa, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Seiichi Ishida
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Japan
- Graduate School of Engineering, Sojo University, Kumamoto, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Sendai, Japan.
| |
Collapse
|
5
|
Akiyama S, Saku N, Miyata S, Ite K, Nonaka H, Toyoda M, Kamiya A, Kiyono T, Kimura T, Kasahara M, Umezawa A. Drug metabolic activity as a selection factor for pluripotent stem cell-derived hepatic progenitor cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:155-178. [PMID: 37678970 DOI: 10.1016/bs.pmbts.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
As a metabolic organ, the liver plays a variety of roles, including detoxification. It has been difficult to obtain stable supplies of hepatocytes for transplantation and for accurate hepatotoxicity determination in drug discovery research. Human pluripotent stem cells, capable of unlimited self-renewal, may be a promising source of hepatocytes. In order to develop a stable supply of embryonic stem cell (ESC)-derived hepatocytes, we have purified human ESC-derived hepatic progenitor cells with exposure to cytocidal puromycin by using their ability to metabolize drugs. Hepatic progenitor cells stably proliferated at least 220-fold over 120 days, maintaining hepatic progenitor cell-like properties. High drug-metabolizing hepatic progenitor cells can be matured into liver cells by suppressing hepatic proliferative signals. The method we developed enables the isolation and proliferation of functional hepatic progenitors from human ESCs, thereby providing a stable supply of high-quality cell resources at high efficiency. Cells produced by this method may facilitate cell therapy for hepatic diseases and reliable drug discovery research.
Collapse
Affiliation(s)
- Saeko Akiyama
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan; Department of Advanced Pediatric Medicine (National Center for Child Health and Development), Tohoku University School of Medicine, Miyagi, Japan
| | - Noriaki Saku
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Shoko Miyata
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Kenta Ite
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Hidenori Nonaka
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Masashi Toyoda
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan; Research team for Aging Science (Vascular Medicine), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of BioSciences, Kitasato University School of Science, Kanagawa, Japan
| | - Mureo Kasahara
- Department of Pathology, National Center for Child Health and Development Hospital, Tokyo, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan.
| |
Collapse
|
6
|
Enosawa S. Clinical Trials of Stem Cell Therapy in Japan: The Decade of Progress under the National Program. J Clin Med 2022; 11:7030. [PMID: 36498605 PMCID: PMC9736364 DOI: 10.3390/jcm11237030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Stem cell therapy is a current world-wide topic in medical science. Various therapies have been approved based on their effectiveness and put into practical use. In Japan, research and development-related stem cell therapy, generally referred to as regenerative medicine, has been led by the government. The national scheme started in 2002, and support for the transition to clinical trials has been accelerating since 2011. Of the initial 18 projects that were accepted in the budget for preclinical research, 15 projects have begun clinical trials so far. These include the transplantation of retinal, cardiac, and dopamine-producing cells differentiated from human induced pluripotent stem (iPS) cells and hepatocyte-like cells differentiated from human embryonic stem (ES) cells. The distinctive feature of the stem cell research in Japan is the use of iPS cells. A national framework was also been set-up to attain the final goal: health insurance coverage. Now, insurance covers cell transplantation therapies for the repair and recovery of damaged skin, articular cartilage, and stroke as well as therapies introduced from abroad, such as allogeneic mesenchymal stem cells for graft-versus-host disease and chimeric antigen receptor-T (CAR-T) cell therapy. To prepare this review, original information was sought from Japanese authentic websites, which are reliable but a little hard to access due to the fact of multiple less-organized databases and the language barrier. Then, each fact was corroborated by citing its English version or publication in international journals as much as possible. This review provides a summary of progress over the past decade under the national program and a state-of-the-art factual view of research activities, government policy, and regulation in Japan for the realization of stem cell therapy.
Collapse
Affiliation(s)
- Shin Enosawa
- Division for Advanced Medical Sciences, National Center for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
7
|
Miyata S, Saku N, Akiyama S, Javaregowda PK, Ite K, Takashima N, Toyoda M, Yura K, Kimura T, Nishina H, Nakazawa A, Kasahara M, Nonaka H, Kiyono T, Umezawa A. Puromycin-based purification of cells with high expression of the cytochrome P450 CYP3A4 gene from a patient with drug-induced liver injury (DILI). Stem Cell Res Ther 2022; 13:6. [PMID: 35012658 PMCID: PMC8744258 DOI: 10.1186/s13287-021-02680-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Many drugs have the potential to induce the expression of drug-metabolizing enzymes, particularly cytochrome P450 3A4 (CYP3A4), in hepatocytes. Hepatocytes can be accurately evaluated for drug-mediated CYP3A4 induction; this is the gold standard for in vitro hepatic toxicology testing. However, the variation from lot to lot is an issue that needs to be addressed. Only a limited number of immortalized hepatocyte cell lines have been reported. In this study, immortalized cells expressing CYP3A4 were generated from a patient with drug-induced liver injury (DILI). METHODS To generate DILI-derived cells with high expression of CYP3A4, a three-step approach was employed: (1) Differentiation of DILI-induced pluripotent stem cells (DILI-iPSCs); (2) Immortalization of the differentiated cells; (3) Selection of the cells by puromycin. It was hypothesized that cells with high cytochrome P450 gene expression would be able to survive exposure to cytotoxic antibiotics because of their increased drug-metabolizing activity. Puromycin, a cytotoxic antibiotic, was used in this study because of its rapid cytocidal effect at low concentrations. RESULTS The hepatocyte-like cells differentiated from DILI-iPSCs were purified by exposure to puromycin. The puromycin-selected cells (HepaSM or SI cells) constitutively expressed the CYP3A4 gene at extremely high levels and exhibited hepatocytic features over time. However, unlike primary hepatocytes, the established cells did not produce bile or accumulate glycogen. CONCLUSIONS iPSC-derived hepatocyte-like cells with intrinsic drug-metabolizing enzymes can be purified from non-hepatocytes and undifferentiated iPSCs using the cytocidal antibiotic puromycin. The puromycin-selected hepatocyte-like cells exhibited characteristics of hepatocytes after immortalization and may serve as another useful source for in vitro hepatotoxicity testing of low molecular weight drugs.
Collapse
Affiliation(s)
- Shoko Miyata
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, 157-8535, Japan
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Noriaki Saku
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, 157-8535, Japan
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Saeko Akiyama
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, 157-8535, Japan
- Advanced Pediatric Medicine, Tohoku University School of Medicine, Miyagi, 980-8574, Japan
| | - Palaksha Kanive Javaregowda
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, 157-8535, Japan
| | - Kenta Ite
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, 157-8535, Japan
| | - Nagisa Takashima
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, 157-8535, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, 112-8610, Japan
| | - Masashi Toyoda
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, 157-8535, Japan
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, 112-8610, Japan
- School of Advanced Science and Engineering, Waseda University, Tokyo, 162-0041, Japan
| | - Tohru Kimura
- Department of BioSciences, Kitasato University School of Science, Kanagawa, 252-0373, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Atsuko Nakazawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, 157-8535, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hidenori Nonaka
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, 157-8535, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, 277-8577, Japan.
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, 157-8535, Japan.
- Advanced Pediatric Medicine, Tohoku University School of Medicine, Miyagi, 980-8574, Japan.
| |
Collapse
|
8
|
Tsuneishi R, Saku N, Miyata S, Akiyama S, Javaregowda PK, Ite K, Takashima N, Toyoda M, Kimura T, Kuroda M, Nakazawa A, Kasahara M, Nonaka H, Kamiya A, Kiyono T, Yamauchi J, Umezawa A. Ammonia-based enrichment and long-term propagation of zone I hepatocyte-like cells. Sci Rep 2021; 11:11381. [PMID: 34059723 PMCID: PMC8166824 DOI: 10.1038/s41598-021-90708-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Ammonia has a cytotoxic effect and can therefore be used as a selection agent for enrichment of zone I hepatocytes. However, it has not yet been determined whether ammonia-treated hepatocyte-like cells are able to proliferate in vitro. In this study, we employed an ammonia selection strategy to purify hepatocyte-like cells that were differentiated from human embryonic stem cells (ESCs) and from induced pluripotent stem cells (iPSCs). The resistance to cytotoxicity or cell death by ammonia is likely attributable to the metabolism of ammonia in the cells. In addition to ammonia metabolism-related genes, ammonia-selected hepatocytes showed increased expression of the cytochrome P450 genes. Additionally, the ammonia-selected cells achieved immortality or at least an equivalent life span to human pluripotent stem cells without affecting expression of the liver-associated genes. Ammonia treatment in combination with in vitro propagation is useful for obtaining large quantities of hepatocytes.
Collapse
Affiliation(s)
- Ruri Tsuneishi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Noriaki Saku
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Shoko Miyata
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Saeko Akiyama
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Palaksha Kanive Javaregowda
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Kenta Ite
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Nagisa Takashima
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Masashi Toyoda
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, Kanagawa, 252-0373, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Atsuko Nakazawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Saitama Children's Medical Center, Saitama, 330-8777, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hidenori Nonaka
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, 277-8577, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
9
|
Umezawa A, Sato Y, Kusakawa S, Amagase R, Akutsu H, Nakamura K, Kasahara M, Matsubara Y, Igarashi T. Research and Development Strategy for Future Embryonic Stem Cell-Based Therapy in Japan. JMA J 2020; 3:287-294. [PMID: 33225099 PMCID: PMC7676987 DOI: 10.31662/jmaj.2018-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 05/29/2020] [Indexed: 11/09/2022] Open
Abstract
Herewith, we review an updated progress of regenerative medical products using human embryonic stem cells (ESCs) in Japan. Two groups from Kyoto University and the National Center for Child Health and Development (NCCHD) established a novel derivation/cultivation system of ESCs for potential application in translational and clinical research. At the first stage of ESC derivation, murine feeder cells have been used in line with Japanese guidelines on public health associated with the implementation of the xenograft. To avoid exposure of ESCs to animal products in culture media, a xeno-free cultivating system has been established. Twelve ESCs (KhES-1, KhES-2, KhES-3, KhES-4, KhES-5, SEES-1, SEES-2, SEES-3, SEES-4, SEES-5, SEES-6, and SEES-7) are now available under a clinically relevant platform for industrially and clinically applicable regenerative medical products. NCCHD submitted an investigative new drug application to the Pharmaceuticals and Medical Devices Agency (PMDA) for using ESC-based products in patients with hyperammonemia due to genetic defects on March 2018 under the Pharmaceutical Affairs Law (now revised to the Pharmaceuticals, Medical Devices, and Other Therapeutic Products Act). Currently, up to ten ESC-based products are being prepared for intractable and rare disorders in Japan.
Collapse
Affiliation(s)
- Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Shinji Kusakawa
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Rin Amagase
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuaki Nakamura
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yoichi Matsubara
- National Center for Child Health and Development Research Institute, Tokyo, Japan
| | | |
Collapse
|
10
|
Isono W, Kawasaki T, Ichida JK, Ayabe T, Hiraike O, Umezawa A, Akutsu H. The combination of dibenzazepine and a DOT1L inhibitor enables a stable maintenance of human naïve-state pluripotency in non-hypoxic conditions. Regen Ther 2020; 15:161-168. [PMID: 33426214 PMCID: PMC7770342 DOI: 10.1016/j.reth.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 10/26/2022] Open
Abstract
Conventional human pluripotent stem cells (hPSCs), known for being in a primed state, are pivotal for both basic research and clinical applications since such cells produce various types of differentiated cells. Recent reports on PSCs shed light on the pluripotent hierarchy of stem cells and have promoted the exploration of new stem cell states along with their culture systems. Human naïve PSCs are expected to provide further knowledge of early developmental mechanisms and improvements for differentiation programmes in the regenerative therapy of conventionally primed PSCs. However, practical challenges exist in using naïve-state PSCs such as determining the conditions for hypoxic culture condition and showing limited stable cellular proliferation. Here, we have developed new leukemia inhibitory factor dependent PSCs by applying our previous work, the combination of dibenzazepine and a DOT1L inhibitor to achieve the stable culture of naïve-state PSCs. The potential of these cells to differentiate into all three germ layers was shown both in vitro and in vivo. Such new naïve-state PSCs formed dome-shaped colonies at a faster rate than conventional, primed-state human induced PSCs and could be maintained for an extended period in the absence of hypoxic culture conditions. We also identified relatively high expression levels of naïve cell markers. Thus, non-hypoxia treated, leukemia inhibitory factor-dependent PSCs are anticipated to have characteristics similar to those of naïve-like PSCs, and to enhance the utility value of PSCs. Such naïve PSCs may allow the molecular characterization of previously undefined naïve human PSCs, and to ultimately contribute to the use of human pluripotent stem cells in regenerative medicine and disease modelling.
Collapse
Affiliation(s)
- Wataru Isono
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Obstetrics and Gynecology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8605, Japan
| | - Tomoyuki Kawasaki
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Takuya Ayabe
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8605, Japan
| | - Osamu Hiraike
- Department of Obstetrics and Gynaecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| |
Collapse
|
11
|
Gorlin syndrome-induced pluripotent stem cells form medulloblastoma with loss of heterozygosity in PTCH1. Aging (Albany NY) 2020; 12:9935-9947. [PMID: 32436863 PMCID: PMC7288908 DOI: 10.18632/aging.103258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Gorlin syndrome is a rare autosomal dominant hereditary disease with a high incidence of tumors such as basal cell carcinoma and medulloblastoma. Disease-specific induced pluripotent stem cells (iPSCs) and an animal model have been used to analyze disease pathogenesis. In this study, we generated iPSCs derived from fibroblasts of four patients with Gorlin syndrome (Gln-iPSCs) with heterozygous mutations of the PTCH1 gene. Gln-iPSCs from the four patients developed into medulloblastoma, a manifestation of Gorlin syndrome, in 100% (four out of four), of teratomas after implantation into immunodeficient mice, but none (0/584) of the other iPSC-teratomas did so. One of the medulloblastomas showed loss of heterozygosity in the PTCH1 gene while the benign teratoma, i.e. the non-medulloblastoma portion, did not, indicating a close clinical correlation between tumorigenesis in Gorlin syndrome patients and Gln-iPSCs.
Collapse
|
12
|
Yasuda S, Kusakawa S, Kuroda T, Miura T, Tano K, Takada N, Matsuyama S, Matsuyama A, Nasu M, Umezawa A, Hayakawa T, Tsutsumi H, Sato Y. Tumorigenicity-associated characteristics of human iPS cell lines. PLoS One 2018; 13:e0205022. [PMID: 30286143 PMCID: PMC6171902 DOI: 10.1371/journal.pone.0205022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/18/2018] [Indexed: 01/06/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) represent promising raw materials of human cell-based therapeutic products (hCTPs). As undifferentiated hiPSCs exhibit intrinsic tumorigenicity properties that enable them to form teratomas, hCTPs containing residual undifferentiated hiPSCs may cause tumor formation following transplantation. We first established quantitative and sensitive tumorigenicity testing of hiPSCs dissociated into single cells using NOD/Shi-scid IL2Rγnull (NOG) mice by inhibiting apoptosis of hiPSCs with a Rho kinase inhibitor. To examine different features in tumorigenicity of various hiPSCs, 10 commonly available hiPSC lines were subjected to in vivo tumorigenicity testing. Transplanted hiPSC lines showed remarkable variation in tumor incidence, formation latency, and volumes. Most of the tumors formed were classified as immature teratomas. However, no signs of malignancies, such as carcinoma and sarcoma, were recognized in the tumors. Characteristics associated tumorigenicity of hiPSCs were investigated with microarray analysis, karyotype analysis, and whole exome sequencing. Gene expression profiling and pathway analysis supported different features of hiPSC lines in tumorigenicity. hiPSC lines showed chromosomal abnormalities in some lines and 61-77 variants of cancer-related genes carrying effective nonsynonymous mutations, which were confirmed in the COSMIC databases. In this study, the chromosomal abnormalities and cancer-related gene mutations observed in hiPSC lines did not lead to the malignancy of tumors derived from hiPSCs. Our results suggest that the potential tumorigenicity risk of hCTPs containing residual undifferentiated hiPSCs is dependent on not only amounts of undifferentiated hiPSCs but also features of the cell lines used as raw materials, a finding that should be considered from the perspective of quality of hCTPs used.
Collapse
Affiliation(s)
- Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Shinji Kusakawa
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Takuya Kuroda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Takumi Miura
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Keiko Tano
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Nozomi Takada
- Center for Rare Disease Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Satoko Matsuyama
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
- Center for Rare Disease Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Akifumi Matsuyama
- Center for Rare Disease Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Michiyo Nasu
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takao Hayakawa
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan
| | | | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
- Department of Quality Assurance Science for Pharmaceuticals, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Department of Cellular & Gene Therapy Products, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|