1
|
Restivo E, Pugliese D, Gallichi-Nottiani D, Sammartino JC, Bloise N, Peluso E, Percivalle E, Janner D, Milanese D, Visai L. Effect of Low Copper Doping on the Optical, Cytocompatible, Antibacterial, and SARS-CoV-2 Trapping Properties of Calcium Phosphate Glasses. ACS OMEGA 2023; 8:42264-42274. [PMID: 38024754 PMCID: PMC10652837 DOI: 10.1021/acsomega.3c04293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Calcium phosphate glasses (CPGs) are acquiring great importance in the biomedical field because of their thermomechanical and bioresorbable properties. In this study, optically transparent copper (1 mol %)-doped calcium phosphate glasses (CPGs_Cu) were prepared through the melt-quenching method, and their biocompatibility and antibacterial and antiviral properties were evaluated and compared with undoped CPGs. Biocompatibility was evaluated on murine fibroblast NIH-3T3 cells as a preliminary study of cytocompatibility. The in vitro tests were performed through indirect and direct cytotoxicity analyses by MTT and Alamar Blue assays and supported by electron microscopy observations. Microbiological analyses were performed against the most common Gram-negative and Gram-positive pathogens that cause nosocomial infections: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and the methicillin-resistant Staphylococcus aureus strain. In addition, the bioglass samples were exposed to SARS-CoV-2 to assess their effects on viral survival. The obtained results assessed the biocompatibility of both bioglass types and their ability to reduce the viral load and trap the virus. In addition, Cu2+-doped bioglass was found to be antibacterial despite its low content (1 mol %) of copper, making this a promising candidate material for biomedical applications, e.g., surgery probes, drug delivery, and photodynamic therapy.
Collapse
Affiliation(s)
- Elisa Restivo
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
| | - Diego Pugliese
- Department
of Applied Science and Technology, UdR INSTM, Politecnico di Torino, Torino10129,Italy
| | | | - José Camilla Sammartino
- Department
of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia27100,Italy
| | - Nora Bloise
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia27100,Italy
| | - Emanuela Peluso
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
| | - Elena Percivalle
- Molecular
Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia27100,Italy
| | - Davide Janner
- Department
of Applied Science and Technology, UdR INSTM, Politecnico di Torino, Torino10129,Italy
| | - Daniel Milanese
- Department
of Engineering and Architecture, UdR INSTM, University of Parma, Parma43121,Italy
| | - Livia Visai
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia27100,Italy
| |
Collapse
|