1
|
Romani M, Warscheid T, Nicole L, Marcon L, Di Martino P, Suzuki MT, Lebaron P, Lami R. Current and future chemical treatments to fight biodeterioration of outdoor building materials and associated biofilms: Moving away from ecotoxic and towards efficient, sustainable solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149846. [PMID: 34464791 DOI: 10.1016/j.scitotenv.2021.149846] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
All types of building materials are rapidly colonized by microorganisms, initially through an invisible and then later a visible biofilm that leads to their biodeterioration. Over centuries, this natural phenomenon has been managed using mechanical procedures, oils, or even wax. In modern history, many treatments such as high-pressure cleaners, biocides (mainly isothiazolinones and quaternary ammonium compounds) are commercially available, as well as preventive ones, such as the use of water-repellent coatings in the fabrication process. While all these cleaning techniques offer excellent cost-benefit ratios, their limitations are numerous. Indeed, building materials are often quickly recolonized after application, and microorganisms are increasingly reported as resistant to chemical treatments. Furthermore, many antifouling compounds are ecotoxic, harmful to human health and the environment, and new regulations tend to limit their use and constrain their commercialization. The current state-of-the-art highlights an urgent need to develop innovative antifouling strategies and the widespread use of safe and eco-friendly solutions to biodeterioration. Interestingly, innovative approaches and compounds have recently been identified, including the use of photocatalysts or natural compounds such as essential oils or quorum sensing inhibitors. Most of these solutions developed in laboratory settings appear very promising, although their efficiency and ecotoxicological features remain to be further tested before being widely marketed. This review highlights the complexity of choosing the adequate antifouling compounds when fighting biodeterioration and proposes developing case-to-case innovative strategies to raise this challenge, relying on integrative and multidisciplinary approaches.
Collapse
Affiliation(s)
- Mattea Romani
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique de Banyuls sur Mer, Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| | | | - Lionel Nicole
- Sorbonne Université, CNRS, Laboratoire de chimie de la matière condensée de Paris (LCMCP), 4 Place Jussieu, 75005 Paris, France
| | - Lionel Marcon
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique de Banyuls sur Mer, Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| | - Patrick Di Martino
- Université de Cergy-Pontoise, Laboratoire ERRMECe, rue Descartes site de Neuville-sur-Oise, 95031 Cergy-Pontoise, France
| | - Marcelino T Suzuki
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique de Banyuls sur Mer, Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique de Banyuls sur Mer, Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique de Banyuls sur Mer, Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France.
| |
Collapse
|
3
|
Herman A, Aerts O, de Montjoye L, Tromme I, Goossens A, Baeck M. Isothiazolinone derivatives and allergic contact dermatitis: a review and update. J Eur Acad Dermatol Venereol 2018; 33:267-276. [PMID: 30284765 DOI: 10.1111/jdv.15267] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/20/2018] [Indexed: 01/12/2023]
Abstract
Allergic contact dermatitis (ACD) from isothiazolinones has frequently been described in the literature. Following an epidemic of sensitization to methylchloroisothiazolinone/methylisothiazolinone (MCI/MI) in the 1980s, and more recently to MI, the Scientific Committee on Consumer Safety of the European Commission banned their use in leave-on products, while restricting that in rinse-off cosmetics. Despite a decreasing prevalence of ACD from MCI/MI and MI, cases caused by occupational exposure and non-cosmetic isothiazolinone sources are on the rise. Moreover, sensitization to newer and lesser known isothiazolinones has been reported. This paper reviews the epidemiology of contact allergy to different isothiazolinones, clinical presentation of isothiazolinone-induced ACD, most relevant sensitization sources and potential cross-reactions between isothiazolinone derivatives. It also provides an update on recent legislative measures.
Collapse
Affiliation(s)
- A Herman
- Department of Dermatology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - O Aerts
- Department of Dermatology, University Hospital Antwerp (UZA) and University of Antwerp (UA), Antwerp, Belgium
| | - L de Montjoye
- Department of Dermatology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - I Tromme
- Department of Dermatology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - A Goossens
- Department of Dermatology, University Hospital KU Leuven, Leuven, Belgium
| | - M Baeck
- Department of Dermatology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
4
|
Halla N, Fernandes IP, Heleno SA, Costa P, Boucherit-Otmani Z, Boucherit K, Rodrigues AE, Ferreira ICFR, Barreiro MF. Cosmetics Preservation: A Review on Present Strategies. Molecules 2018; 23:E1571. [PMID: 29958439 PMCID: PMC6099538 DOI: 10.3390/molecules23071571] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022] Open
Abstract
Cosmetics, like any product containing water and organic/inorganic compounds, require preservation against microbial contamination to guarantee consumer’s safety and to increase their shelf-life. The microbiological safety has as main goal of consumer protection against potentially pathogenic microorganisms, together with the product’s preservation resulting from biological and physicochemical deterioration. This is ensured by chemical, physical, or physicochemical strategies. The most common strategy is based on the application of antimicrobial agents, either by using synthetic or natural compounds, or even multifunctional ingredients. Current validation of a preservation system follow the application of good manufacturing practices (GMPs), the control of the raw material, and the verification of the preservative effect by suitable methodologies, including the challenge test. Among the preservatives described in the positive lists of regulations, there are parabens, isothiasolinone, organic acids, formaldehyde releasers, triclosan, and chlorhexidine. These chemical agents have different mechanisms of antimicrobial action, depending on their chemical structure and functional group’s reactivity. Preservatives act on several cell targets; however, they might present toxic effects to the consumer. Indeed, their use at high concentrations is more effective from the preservation viewpoint being, however, toxic for the consumer, whereas at low concentrations microbial resistance can develop.
Collapse
Affiliation(s)
- Noureddine Halla
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000 Tlemcen, Algeria.
- Laboratory of Biotoxicology, Pharmacognosy and Biological Recovery of Plants, Department of Biology, Faculty of Sciences, University of Moulay-Tahar, 20000 Saida, Algeria.
| | - Isabel P Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-253 Bragança, Portugal.
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-253 Bragança, Portugal.
| | - Patrícia Costa
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Zahia Boucherit-Otmani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000 Tlemcen, Algeria.
| | - Kebir Boucherit
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LAPSAB), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000 Tlemcen, Algeria.
| | - Alírio E Rodrigues
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Maria Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-253 Bragança, Portugal.
| |
Collapse
|