1
|
Hanawa Y, Higashiyama M, Kurihara C, Tanemoto R, Ito S, Mizoguchi A, Nishii S, Wada A, Inaba K, Sugihara N, Horiuchi K, Okada Y, Narimatsu K, Komoto S, Tomita K, Hokari R. Acesulfame potassium induces dysbiosis and intestinal injury with enhanced lymphocyte migration to intestinal mucosa. J Gastroenterol Hepatol 2021; 36:3140-3148. [PMID: 34368996 DOI: 10.1111/jgh.15654] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/01/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM The artificial sweetener acesulfame potassium (ACK) is officially approved as safe for intake and has been used in processed foods. However, ACKs have been reported to induce metabolic syndrome, along with alteration of the gut microbiota in mice. In recent years, studies have suggested that this artificial sweetener promotes myeloperoxidase reactivity in Crohn's disease-like ileitis. We aimed to investigate the effect of ACK on the intestinal mucosa and gut microbiota of normal mice. METHODS Acesulfame potassium was administered to C57BL/6J mice (8 weeks old) via free drinking. Intestinal damage was evaluated histologically, and messenger RNA (mRNA) levels of TNF-α, IFN-γ, IL1-β, MAdCAM-1, GLP1R, and GLP2R were determined with quantitative reverse transcription polymerase chain reaction (qRT-PCR). Immunohistochemistry was performed to examine the expression of MAdCAM-1 in the small intestine. The composition of gut microbiota was assessed using high-throughput sequencing. We performed intravital microscopic observation to examine if ACK altered lymphocyte migration to the intestinal microvessels. RESULTS Acesulfame potassium increased the expression of proinflammatory cytokines, decreased the expression of GLP-1R and GLP-2R, and induced small intestinal injury with an increase in intestinal permeability, and ACK treatment induced microbial changes, but the transfer of feces alone from ACK mice did not reproduce intestinal damage in recipient mice. ACK treatment significantly increased the migration of lymphocytes to intestinal microvessels. CONCLUSION Acesulfame potassium induces dysbiosis and intestinal injury with enhanced lymphocyte migration to intestinal mucosa. Massive use of non-caloric artificial sweeteners may not be as safe as we think.
Collapse
Affiliation(s)
- Yoshinori Hanawa
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Chie Kurihara
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Rina Tanemoto
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Suguru Ito
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Akinori Mizoguchi
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shin Nishii
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Akinori Wada
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kenichi Inaba
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Nao Sugihara
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kazuki Horiuchi
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Yoshikiyo Okada
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kazuyuki Narimatsu
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shunsuke Komoto
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kengo Tomita
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
2
|
Analysis of Caloric and Noncaloric Sweeteners Present in Dairy Products Aimed at the School Market and Their Possible Effects on Health. Nutrients 2021; 13:nu13092994. [PMID: 34578870 PMCID: PMC8471137 DOI: 10.3390/nu13092994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Over the past decades, Mexico has become one of the main sweetener-consuming countries in the world. Large amounts of these sweeteners are in dairy products aimed at the children’s market in various presentations such as yogurt, flavored milk, flan, and cheeses. Although numerous studies have shown the impact of sweeteners in adults, the current evidence for children is insufficient and discordant to determine if these substances have any risk or benefit on their well-being. Therefore, this study aimed to describe the sweeteners present in 15 dairy products belonging to the school-age children’s market in Mexico and their impact on health. These dairy products were selected through a couple of surveys directed at parents of school-age children. After that, the list of ingredients of each product was analyzed to identify their sweetener content. From there, exhaustive bibliographic research on sweeteners and their possible health effects was carried out, which included 109 articles and 18 studies. The results showed that at a neurological, endocrinological, cardiovascular, metabolic, osseous, renal, hepatic, dental, reticular, carcinogenic, and gut microbiota level; sucrose, fructose, high-fructose corn syrup, maltodextrins, sucralose, and acesulfame K, have a negative effect. While maltodextrins, stevia, polydextrose, and modified starch have a positive one. For these reasons, it is necessary to evaluate the advantages and disadvantages that the consumption of each sweetener entails, as well as a determination of the appropriate acceptable daily intake (ADI).
Collapse
|
3
|
Farid A, Hesham M, El-Dewak M, Amin A. The hidden hazardous effects of stevia and sucralose consumption in male and female albino mice in comparison to sucrose. Saudi Pharm J 2020; 28:1290-1300. [PMID: 33132722 PMCID: PMC7584803 DOI: 10.1016/j.jsps.2020.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
Replacing sucrose with non-caloric sweeteners is an approach to avoid overweight and diabetes development. Non-caloric sweeteners are classified into either artificial as sucralose or natural as stevia. Both of them have been approved by FDA, but the effects of their chronic consumption are controversial. The present study aimed to evaluate the effects of these two sweeteners, in male and female albino mice, on different blood biochemical parameters, enzymes activities and immunological parameters after 8 and 16 weeks of sweeteners administration. 40.5 mg/ml of sucrose, 5.2 mg/ml of sucralose and 4.2 mg/ml of stevia were dissolved individually in distilled water. Mice were administrated by sweetener's solution for 5 h daily. Male and female mice showed a preference for water consumption with sucralose or stevia. Both of the two sweeteners significantly reduced the hemoglobin level, HCT%, RBCs and WBCs count. After 18 weeks, significant elevations in liver and kidney function enzymes were observed in male and female mice administrated with both non-caloric sweeteners. Histopathological examination in sucralose and stevia administrated groups confirmed the biochemical results; where it revealed a severe damage in liver and kidney sections. While, sucrose administration elevated, only, the levels of ALT, AST and cholesterol in male mice. A vigorous elevation in levels of different immunoglobulin (IgG, IgE and IgA) and pro-inflammatory cytokines (IL-6 and -8), that was accompanied by a significant reduction in level of anti-inflammatory cytokine IL-10, was observed in male and female mice groups administrated with sucralose or stevia. On the other hand, sucrose administration led to an elevation in IgA and reduction in IL-10 levels.
Collapse
Affiliation(s)
- Alyaa Farid
- Zoology Department, Faculty of Science, Cairo University, Egypt
| | - Marim Hesham
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Egypt
| | - Mohamed El-Dewak
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Egypt
| | - Ayman Amin
- Department of Plant Physiology, Faculty of Agriculture, Cairo University, Egypt
| |
Collapse
|
4
|
Plaza-Diaz J, Pastor-Villaescusa B, Rueda-Robles A, Abadia-Molina F, Ruiz-Ojeda FJ. Plausible Biological Interactions of Low- and Non-Calorie Sweeteners with the Intestinal Microbiota: An Update of Recent Studies. Nutrients 2020; 12:1153. [PMID: 32326137 PMCID: PMC7231174 DOI: 10.3390/nu12041153] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Sweeteners that are a hundred thousand times sweeter than sucrose are being consumed as sugar substitutes. The effects of sweeteners on gut microbiota composition have not been completely elucidated yet, and numerous gaps related to the effects of nonnutritive sweeteners (NNS) on health still remain. The NNS aspartame and acesulfame-K do not interact with the colonic microbiota, and, as a result, potentially expected shifts in the gut microbiota are relatively limited, although acesulfame-K intake increases Firmicutes and depletes Akkermansia muciniphila populations. On the other hand, saccharin and sucralose provoke changes in the gut microbiota populations, while no health effects, either positive or negative, have been described; hence, further studies are needed to clarify these observations. Steviol glycosides might directly interact with the intestinal microbiota and need bacteria for their metabolization, thus they could potentially alter the bacterial population. Finally, the effects of polyols, which are sugar alcohols that can reach the colonic microbiota, are not completely understood; polyols have some prebiotics properties, with laxative effects, especially in patients with inflammatory bowel syndrome. In this review, we aimed to update the current evidence about sweeteners' effects on and their plausible biological interactions with the gut microbiota.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Belén Pastor-Villaescusa
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- LMU–Ludwig-Maximilians-University of Munich, Division of Metabolic and Nutritional Medicine, von Hauner Children’s Hospital, University of Munich Medical Center, 80337 Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Centre for Environmental Health, 85764 Neuherberg, Germany
| | - Ascensión Rueda-Robles
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain
| | - Francisco Abadia-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- RG Adipocytes and metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85764 Neuherberg, Munich, Germany
| |
Collapse
|
5
|
Saccharin Supplementation Inhibits Bacterial Growth and Reduces Experimental Colitis in Mice. Nutrients 2020; 12:nu12041122. [PMID: 32316544 PMCID: PMC7230785 DOI: 10.3390/nu12041122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Non-caloric artificial sweeteners are frequently discussed as components of the “Western diet”, negatively modulating intestinal homeostasis. Since the artificial sweetener saccharin is known to depict bacteriostatic and microbiome-modulating properties, we hypothesized oral saccharin intake to influence intestinal inflammation and aimed at delineating its effect on acute and chronic colitis activity in mice. In vitro, different bacterial strains were grown in the presence or absence of saccharin. Mice were supplemented with saccharin before or after induction of acute or chronic colitis using dextran sodium sulfate (DSS) and the extent of colitis was assessed. Ex vivo, intestinal inflammation, fecal bacterial load and composition were studied by immunohistochemistry analyses, quantitative PCR, 16 S RNA PCR or next generation sequencing in samples collected from analyzed mice. In vitro, saccharin inhibited bacterial growth in a species-dependent manner. In vivo, oral saccharin intake reduced fecal bacterial load and altered microbiome composition, while the intestinal barrier was not obviously affected. Of note, DSS-induced colitis activity was significantly improved in mice after therapeutic or prophylactic treatment with saccharin. Together, this study demonstrates that oral saccharin intake decreases intestinal bacteria count and hence encompasses the capacity to reduce acute and chronic colitis activity in mice.
Collapse
|