1
|
Tiotiu A, Steiropoulos P, Novakova S, Nedeva D, Novakova P, Chong-Neto H, Fogelbach GG, Kowal K. Airway Remodeling in Asthma: Mechanisms, Diagnosis, Treatment, and Future Directions. Arch Bronconeumol 2025; 61:31-40. [PMID: 39368875 DOI: 10.1016/j.arbres.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024]
Abstract
Airway remodeling (AR) with chronic inflammation, are key features in asthma pathogenesis. AR characterized by structural changes in the bronchial wall is associated with a specific asthma phenotype with poor clinical outcomes, impaired lung function and reduced treatment response. Most studies focus on the role of inflammation, while understanding the mechanisms driving AR is crucial for developing disease-modifying therapeutic strategies. This review paper summarizes current knowledge on the mechanisms underlying AR, diagnostic tools, and therapeutic approaches. Mechanisms explored include the role of the resident cells and the inflammatory cascade in AR. Diagnostic methods such as bronchial biopsy, lung function testing, imaging, and possible biomarkers are described. The effectiveness on AR of different treatments of asthma including corticosteroids, leukotriene modifiers, bronchodilators, macrolides, biologics, and bronchial thermoplasty is discussed, as well as other possible therapeutic options. AR poses a significant challenge in asthma management, contributing to disease severity and treatment resistance. Current therapeutic approaches target mostly airway inflammation rather than smooth muscle cell dysfunction and showed limited benefits on AR. Future research should focus more on investigating the mechanisms involved in AR to identify novel therapeutic targets and to develop new effective treatments able to prevent irreversible structural changes and improve long-term asthma outcomes.
Collapse
Affiliation(s)
- Angelica Tiotiu
- Department of Pulmonology, University Hospital Saint-Luc, Brussels, Belgium; Pole Pneumology, ENT, and Dermatology - LUNS, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.
| | - Paschalis Steiropoulos
- Department of Pulmonology, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Silviya Novakova
- Department of Allergology, University Hospital "Sv. Georgi" Plovdiv, Bulgaria
| | - Denislava Nedeva
- Clinic of Asthma and Allergology, UMBAL Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | - Plamena Novakova
- Department of Allergy, Medical University Sofia, Sofia, Bulgaria
| | - Herberto Chong-Neto
- Division of Allergy and Immunology, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology and Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Mailhot-Larouche S, Celis-Preciado C, Heaney LG, Couillard S. Identifying super-responders: A review of the road to asthma remission. Ann Allergy Asthma Immunol 2025; 134:31-45. [PMID: 39383944 DOI: 10.1016/j.anai.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
Asthma is a chronic respiratory disease marked by heterogeneity and variable clinical outcomes. Recent therapeutic advances have highlighted patients achieving optimal outcomes, termed "remission" or "super-response." This review evaluates the various definitions of these terms and explores how disease burden impedes the attainment of remission. We assessed multiple studies, including a recent systematic review and meta-analysis, on biologic treatments for asthma remission. Our review highlights that type 2 inflammation may be the strongest predictor of biologic response. Key comorbidities (eg, obesity and mood disorders) and behavioral factors (eg, poor adherence, improper inhalation technique, and smoking) were identified as dominant traits limiting remission. In addition, asthma burden and longer disease duration significantly restrict the potential for remission in patients with severe asthma under the current treatment paradigm. We review the potential for a "predict-and-prevent" approach, which focuses on early identification of high-risk patients with type 2 inflammation and aggressive treatment to improve long-term asthma outcomes. In conclusion, this scoping review highlights the following unmet needs in asthma remission: (1) a harmonized global definition, with better defined lung function parameters; (2) integration of nonbiologic therapies into remission strategies; and (3) a clinical trial of early biologic intervention in patients with remission-prone, very type 2-high, moderately severe asthma with clinical remission as a predefined primary end point.
Collapse
Affiliation(s)
- Samuel Mailhot-Larouche
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Carlos Celis-Preciado
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Liam G Heaney
- Centre for Experimental Medicine, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, United Kingdom
| | - Simon Couillard
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
3
|
Cosio BG, Shafiek H, Torrego A. Bronchoscopy in Severe Asthmatics: Is it a Safe Procedure? Arch Bronconeumol 2024; 60:545-546. [PMID: 38955578 DOI: 10.1016/j.arbres.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Affiliation(s)
- Borja G Cosio
- Department of Respiratory Medicine, Hospital Son Espases-IdISBa-CIBERES, Palma de Mallorca, Spain.
| | - Hanaa Shafiek
- Chest Diseases Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Alfons Torrego
- Department of Respiratory Medicine, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
4
|
Wang T, Fu P, Huang W, Long L, Long F, Liu S. Bronchial thermoplasty decreases airway remodeling by inhibiting autophagy via the AMPK/mTOR signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:730-739. [PMID: 38655617 PMCID: PMC11177112 DOI: 10.3724/abbs.2024028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 04/26/2024] Open
Abstract
Bronchial thermoplasty (BT), an effective treatment for severe asthma, requires heat to reach the airway to reduce the mass of airway smooth muscle cells (ASMCs). Autophagy is involved in the pathological process of airway remodeling in patients with asthma. However, it remains unclear whether autophagy participates in controlling airway remodeling induced by BT. In this study, we aim to elucidate the autophagy-mediated molecular mechanisms in BT. Our study reveal that the number of autophagosomes and the level of alpha-smooth muscle actin (α-SMA) fluorescence are significantly decreased in airway biopsy tissues after BT. As the temperature increased, BT causes a decrease in cell proliferation and a concomitant increase in the apoptosis of human airway smooth muscle cells (HASMCs). Furthermore, increase in temperature significantly downregulates cellular autophagy, autophagosome accumulation, the LC3II/LC3I ratio, and Beclin-1 expression, upregulates p62 expression, and inhibits the AMPK/mTOR pathway. Furthermore, cotreatment with AICAR (an AMPK agonist) or RAPA (an mTOR antagonist) abolishes the inhibition of autophagy and attenuates the increase in the apoptosis rate of HASMCs induced by the thermal effect. Therefore, we conclude that BT decreases airway remodeling by blocking autophagy induced by the AMPK/mTOR signaling pathway in HASMCs.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pulmonary and Critical Care MedicineUniversity of Chinese Academy of Sciences Shenzhen HospitalShenzhen518106China
- Department of Pulmonary and Critical Care Medicinethe First Affiliated Hospital of Jinan UniversityGuangzhou510630China
| | - Peng Fu
- Department of Pulmonary and Critical Care MedicineUniversity of Chinese Academy of Sciences Shenzhen HospitalShenzhen518106China
| | - Wenting Huang
- Department of Pulmonary and Critical Care MedicineUniversity of Chinese Academy of Sciences Shenzhen HospitalShenzhen518106China
| | - Liang Long
- Department of Pulmonary and Critical Care MedicineUniversity of Chinese Academy of Sciences Shenzhen HospitalShenzhen518106China
| | - Fa Long
- Department of Pulmonary and Critical Care MedicineUniversity of Chinese Academy of Sciences Shenzhen HospitalShenzhen518106China
| | - Shengming Liu
- Department of Pulmonary and Critical Care Medicinethe First Affiliated Hospital of Jinan UniversityGuangzhou510630China
| |
Collapse
|
5
|
Russell RJ, Boulet LP, Brightling CE, Pavord ID, Porsbjerg C, Dorscheid D, Sverrild A. The airway epithelium: an orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur Respir J 2024; 63:2301397. [PMID: 38453256 PMCID: PMC10991852 DOI: 10.1183/13993003.01397-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Asthma is a disease of heterogeneous pathology, typically characterised by excessive inflammatory and bronchoconstrictor responses to the environment. The clinical expression of the disease is a consequence of the interaction between environmental factors and host factors over time, including genetic susceptibility, immune dysregulation and airway remodelling. As a critical interface between the host and the environment, the airway epithelium plays an important role in maintaining homeostasis in the face of environmental challenges. Disruption of epithelial integrity is a key factor contributing to multiple processes underlying asthma pathology. In this review, we first discuss the unmet need in asthma management and provide an overview of the structure and function of the airway epithelium. We then focus on key pathophysiological changes that occur in the airway epithelium, including epithelial barrier disruption, immune hyperreactivity, remodelling, mucus hypersecretion and mucus plugging, highlighting how these processes manifest clinically and how they might be targeted by current and novel therapeutics.
Collapse
Affiliation(s)
- Richard J Russell
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | | | - Christopher E Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ian D Pavord
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| | - Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Asger Sverrild
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
6
|
Wijsman PC, Goorsenberg AWM, d'Hooghe JNS, Ten Hacken NHT, J T H Roelofs J, Mauad T, Weersink EJM, Shah P, Annema JT, Bonta PI. Airway smooth muscle and long-term clinical efficacy following bronchial thermoplasty in severe asthma. Thorax 2024; 79:359-362. [PMID: 38346871 PMCID: PMC10958325 DOI: 10.1136/thorax-2023-220967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The mechanism of action of bronchial thermoplasty (BT) treatment for patients with severe asthma is incompletely understood. This study investigated the 2.5-year impact of BT on airway smooth muscle (ASM) mass and clinical parameters by paired data analysis in 22 patients. Our findings demonstrate the persistence of ASM mass reduction of >50% after 2.5 years. Furthermore, sustained improvement in asthma control, quality of life and exacerbation rates was found, which is in line with previous reports. An association was found between the remaining ASM and both the exacerbation rate (r=0.61, p=0.04 for desmin, r=0.85, p<0.01 for alpha smooth muscle actin (SMA)) and post-bronchodilator forced expiratory volume in 1 s predicted percentage (r=-0.69, p=0.03 for desmin, r=-0.58, p=0.08 for alpha SMA). This study provides new insight into the long-term impact of BT.
Collapse
Affiliation(s)
- Pieta C Wijsman
- Department of Pulmonary Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | | | - Julia N S d'Hooghe
- Department of Pulmonary Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Nick H T Ten Hacken
- Department of Pulmonology, University of Groningen, Groningen, The Netherlands
| | | | - Thais Mauad
- Pathology, São Paulo University Medical School, São Paulo, Brazil
| | - Els J M Weersink
- Department of Pulmonary Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Pallav Shah
- Lung Unit, Royal Brompton and Harefield NHS Foundation and Imperial College, London, UK
- Lung Unit, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Jouke T Annema
- Department of Pulmonary Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Peter I Bonta
- Department of Pulmonary Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Wijsman PC, Goorsenberg AWM, Keijzer N, d'Hooghe JNS, Ten Hacken NHT, Shah PL, Weersink EJM, de Brito JM, de Souza Xavier Costa N, Mauad T, Nawijn MC, Vonk JM, Annema JT, Burgess JK, Bonta PI. Airway wall extracellular matrix changes induced by bronchial thermoplasty in severe asthma. J Allergy Clin Immunol 2024; 153:435-446.e4. [PMID: 37805024 DOI: 10.1016/j.jaci.2023.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Airway remodeling is a prominent feature of asthma, which involves increased airway smooth muscle mass and altered extracellular matrix composition. Bronchial thermoplasty (BT), a bronchoscopic treatment for severe asthma, targets airway remodeling. OBJECTIVE We sought to investigate the effect of BT on extracellular matrix composition and its association with clinical outcomes. METHODS This is a substudy of the TASMA trial. Thirty patients with severe asthma were BT-treated, of whom 13 patients were treated for 6 months with standard therapy (control group) before BT. Demographic data, clinical data including pulmonary function, and bronchial biopsies were collected. Biopsies at BT-treated and nontreated locations were analyzed by histological and immunohistochemical staining. Associations between histology and clinical outcomes were explored. RESULTS Six months after treatment, it was found that the reticular basement membrane thickness was reduced from 7.28 μm to 5.74 μm (21% relative reduction) and the percentage area of tissue positive for collagen increased from 26.3% to 29.8% (13% relative increase). Collagen structure analysis revealed a reduction in the curvature frequency of fibers. The percentage area positive for fibulin-1 and fibronectin increased by 2.5% and 5.9%, respectively (relative increase of 124% and 15%). No changes were found for elastin. The changes in collagen and fibulin-1 negatively associated with changes in FEV1 reversibility. CONCLUSIONS Besides reduction of airway smooth muscle mass, BT has an impact on reticular basement membrane thickness and the extracellular matrix arrangement characterized by an increase in tissue area occupied by collagen with a less dense fiber organization. Both collagen and fibulin-1 are negatively associated with the change in FEV1 reversibility.
Collapse
Affiliation(s)
- Pieta C Wijsman
- Department of Pulmonary Medicine, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annika W M Goorsenberg
- Department of Pulmonary Medicine, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Noa Keijzer
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Julia N S d'Hooghe
- Department of Pulmonary Medicine, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nick H T Ten Hacken
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pallav L Shah
- Department of Pulmonology, Royal Brompton Hospital, Chelsea & Westminster Hospital, London, United Kingdom; National Heart and Lung Institute, Imperial College, Chelsea & Westminster Hospital, London, United Kingdom; Department of Pulmonology, Chelsea & Westminster Hospital, London, United Kingdom
| | - Els J M Weersink
- Department of Pulmonary Medicine, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jôse Mara de Brito
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Natalia de Souza Xavier Costa
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Thais Mauad
- Departamento de Patologia, LIM-05 Laboratório de Patologia Ambiental, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Martijn C Nawijn
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Judith M Vonk
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jouke T Annema
- Department of Pulmonary Medicine, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter I Bonta
- Department of Pulmonary Medicine, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
ChunXiao L, Xin H, Yun L, BoWen L, KunLu S, JiangTao L. Bronchial thermoplasty for severe asthma: potential mechanisms and response markers. Ther Adv Respir Dis 2024; 18:17534666241266348. [PMID: 39344070 PMCID: PMC11440556 DOI: 10.1177/17534666241266348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/12/2024] [Indexed: 10/01/2024] Open
Abstract
Severe asthma (SA) poses a significant challenge to management and treatment, leading to a reduced quality of life and a heavy burden on society and healthcare resources. Bronchial thermoplasty (BT) has emerged as a non-pharmacological intervention for SA, demonstrating its efficacy and safety in improving patients' quality of life and reducing exacerbation rates for over a decade. In particular, BT encounters various obstacles in its clinical application. Since asthma is characterized by high heterogeneity, not all patients derive effective outcomes from BT. Furthermore, current knowledge of markers that indicate response to BT remains limited. Recent research has shed light on the intricate mechanism of action of BT, which extends beyond simple smooth muscle ablation. Therefore, to enhance the clinical practice and implementation of BT, this paper aims to elucidate the mechanism of action and identify potential markers associated with BT response.
Collapse
Affiliation(s)
- Li ChunXiao
- Peking University China‑Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hou Xin
- Peking University China‑Japan Friendship School of Clinical Medicine, Beijing, China
| | - Li Yun
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Liu BoWen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shen KunLu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Lin JiangTao
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No. 2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| |
Collapse
|
9
|
Trevizan-Bau P, Mazzone SB. Neuroimmune pathways regulating airway inflammation. Ann Allergy Asthma Immunol 2023; 131:550-560. [PMID: 37517657 DOI: 10.1016/j.anai.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Airways diseases are typically accompanied by inflammation, which has long been known to contribute to obstruction, mucus hypersecretion, dyspnea, cough, and other characteristic symptoms displayed in patients. Clinical interventions, therefore, often target inflammation to reverse lung pathology and reduce morbidity. The airways and lungs are densely innervated by subsets of nerve fibers, which are not only impacted by pulmonary inflammation but, in addition, likely serve as important regulators of immune cell function. This bidirectional neuroimmune crosstalk is supported by close spatial relationships between immune cells and airway nerve fibers, complementary neural and immune signaling pathways, local specialized airway chemosensory cells, and dedicated reflex circuits. In this article, we review the recent literature on this topic and present state-of-the-art evidence supporting the role of neuroimmune interactions in airway inflammation. In addition, we extend this evidence to synthesize considerations for the clinical translation of these discoveries to improve the management of patients with airway disease.
Collapse
Affiliation(s)
- Pedro Trevizan-Bau
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Henry C, Biardel S, Boucher M, Godbout K, Chakir J, Côté A, Laviolette M, Bossé Y. Bronchial thermoplasty attenuates bronchodilator responsiveness. Respir Med 2023; 217:107340. [PMID: 37422022 DOI: 10.1016/j.rmed.2023.107340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION Bronchial thermoplasty is an effective intervention to improve respiratory symptoms and to reduce the rate of exacerbations in uncontrolled severe asthma. A reduction in airway smooth muscle is arguably the most widely discussed mechanisms accounting for these clinical benefits. Yet, this smooth muscle reduction should also translate into an impaired response to bronchodilator drugs. This study was designed to address this question. METHODS Eight patients with clinical indication for thermoplasty were studied. They were uncontrolled severe asthmatics despite optimal environmental control, treatment of comorbidities, and the use of high-dose inhaled corticosteroids and long-acting β2-agonists. Lung function measured by spirometry and respiratory mechanics measured by oscillometry were examined pre- and post-bronchodilator (salbutamol, 400 μg), both before and at least 1 year after thermoplasty. RESULTS Consistent with previous studies, thermoplasty yielded no benefits in terms of baseline lung function and respiratory mechanics, despite improving symptoms based on two asthma questionnaires (ACQ-5 and ACT-5). The response to salbutamol was also not affected by thermoplasty based on spirometric readouts, including forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio. However, a significant interaction was observed between thermoplasty and salbutamol for two oscillometric readouts, namely reactance at 5 Hz (Xrs5) and reactance area (Ax), showing an attenuated response to salbutamol after thermoplasty. CONCLUSIONS Thermoplasty attenuates the response to a bronchodilator. We argue that this result is a physiological proof of therapeutic efficacy, consistent with the well-described effect of thermoplasty in reducing the amount of airway smooth muscle.
Collapse
Affiliation(s)
- Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| | - Sabrina Biardel
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| | - Krystelle Godbout
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| | - Jamila Chakir
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| | - Andréanne Côté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| | - Michel Laviolette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada.
| |
Collapse
|
11
|
Wang T, Fu P, Long F, Liu S, Hu S, Wang Q, Huang Z, Long L, Huang W, Hu F, Gan J, Dong H, Yan G. Research on the effectiveness and safety of bronchial thermoplasty in patients with chronic obstructive pulmonary disease. Eur J Med Res 2023; 28:331. [PMID: 37689769 PMCID: PMC10492361 DOI: 10.1186/s40001-023-01319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 08/27/2023] [Indexed: 09/11/2023] Open
Abstract
OBJECTIVES To investigate the clinical efficacy and safety of bronchial thermoplasty (BT) in treating patients with chronic obstructive pulmonary disease (COPD). METHODS Clinical data of 57 COPD patients were randomized into the control (n = 29, conventional inhalation therapy) or intervention group (n = 28, conventional inhalation therapy plus BT). Primary outcomes were differences in clinical symptom changes, pulmonary function-related indicators, modified Medical Research Council (mMRC), 6-min walk test (6MWT), COPD assessment test (CAT) score and acute exacerbation incidence from baseline to an average of 3 and 12 months. Safety was assessed by adverse events. RESULTS FEV1, FEV1(%, predicted) and FVC in both groups improved to varying degrees post-treatment compared with those pre-treatment (P < 0.05). The Intervention group showed greater improving amplitudes of FEV1 (Ftime × between groups = 21.713, P < 0.001) and FEV1(%, predicted) (Ftime × between groups = 31.216, P < 0.001) than the control group, and there was no significant difference in FVC variation trend (Ftime × between groups = 1.705, P = 0.193). mMRC, 6MWT and CAT scores of both groups post-treatment improved to varying degrees (Ps < 0.05), but the improving amplitudes of mMRC (Ftime × between groups = 3.947, P = 0.025), 6MWT (Ftime × between groups = 16.988, P < 0.001) and CAT score (Ftime × between groups = 16.741, P < 0.001) in the intervention group were greater than the control group. According to risk assessment of COPD acute exacerbation, the proportion of high-risk COPD patients with acute exacerbation in the control and intervention groups at 1 year post-treatment (100% vs 65%, 100% vs 28.6%), inpatient proportion (100% vs 62.1%; 100% vs 28.6%), COPD acute exacerbations [3.0 (2.50, 5.0) vs 1.0 (1.0, 2.50); 3.0(3.0, 4.0) vs 0 (0, 1.0)] and hospitalizations [2.0 (2.0, 3.0) vs 1.0 (0, 2.0); 2.0 (2.0, 3.0) vs 0 (0, 1.0)] were significantly lower than those pre-treatment (P < 0.05). Besides, data of the intervention group were significantly lower than the control group at each timepoint after treatment (P < 0.05). CONCLUSIONS Combined BT therapy is superior to conventional medical treatment in improving lung function and quality of life of COPD patients, and it also significantly reduces the COPD exacerbation risk without causing serious adverse events.
Collapse
Affiliation(s)
- Tao Wang
- University of Chinese Academy of Sciences Shenzhen Hospital, No. 4253, Songbai Road, Guangming District, Shenzhen, 518106, People's Republic of China
- The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Peng Fu
- University of Chinese Academy of Sciences Shenzhen Hospital, No. 4253, Songbai Road, Guangming District, Shenzhen, 518106, People's Republic of China
| | - Fa Long
- University of Chinese Academy of Sciences Shenzhen Hospital, No. 4253, Songbai Road, Guangming District, Shenzhen, 518106, People's Republic of China.
| | - Shengming Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510630, People's Republic of China.
| | - Siyu Hu
- University of Chinese Academy of Sciences Shenzhen Hospital, No. 4253, Songbai Road, Guangming District, Shenzhen, 518106, People's Republic of China
| | - Qiongping Wang
- University of Chinese Academy of Sciences Shenzhen Hospital, No. 4253, Songbai Road, Guangming District, Shenzhen, 518106, People's Republic of China
- The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510630, People's Republic of China
| | - Zhihui Huang
- University of Chinese Academy of Sciences Shenzhen Hospital, No. 4253, Songbai Road, Guangming District, Shenzhen, 518106, People's Republic of China
| | - Liang Long
- University of Chinese Academy of Sciences Shenzhen Hospital, No. 4253, Songbai Road, Guangming District, Shenzhen, 518106, People's Republic of China
| | - Wenting Huang
- University of Chinese Academy of Sciences Shenzhen Hospital, No. 4253, Songbai Road, Guangming District, Shenzhen, 518106, People's Republic of China
| | - Fengbo Hu
- University of Chinese Academy of Sciences Shenzhen Hospital, No. 4253, Songbai Road, Guangming District, Shenzhen, 518106, People's Republic of China
| | - Jingfan Gan
- University of Chinese Academy of Sciences Shenzhen Hospital, No. 4253, Songbai Road, Guangming District, Shenzhen, 518106, People's Republic of China
| | - Hongbo Dong
- University of Chinese Academy of Sciences Shenzhen Hospital, No. 4253, Songbai Road, Guangming District, Shenzhen, 518106, People's Republic of China
| | - Guomei Yan
- University of Chinese Academy of Sciences Shenzhen Hospital, No. 4253, Songbai Road, Guangming District, Shenzhen, 518106, People's Republic of China
| |
Collapse
|
12
|
Nishiyama H, Kanemitsu Y, Hara J, Fukumitsu K, Takeda N, Kurokawa R, Ito K, Tajiri T, Fukuda S, Uemura T, Ohkubo H, Maeno K, Ito Y, Oguri T, Takemura M, Niimi A. Bronchial thermoplasty improves cough hypersensitivity and cough in severe asthmatics. Respir Med 2023:107303. [PMID: 37307903 DOI: 10.1016/j.rmed.2023.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cough is a troublesome symptom of asthma because it is associated with disease severity and poor asthma control. Bronchial thermoplasty (BT) may be effective in improving cough severity and cough-related quality of life in severe uncontrolled asthma. OBJECTIVE To evaluate the efficacy of BT for cough in severe uncontrolled asthma. METHODS Twelve patients with severe uncontrolled asthma were enrolled in this study between 2018 May and March 2021 and arbitrarily divided into cough-predominant [cough severity Visual Analog Scale (VAS) ≥ 40 mm, n = 8] and typical asthma (cough VAS <40 mm, n = 4) groups. Clinical parameters, such as capsaicin cough sensitivity [C-CS: the concentrations to inhaled capsaicin required to induce at least two (C2) and five (C5) coughs], lung function, and type-2-related biomarkers (fractional nitric oxides and absolute eosinophil counts) and cough-related indices [cough severity VAS and the Leicester Cough Questionnaire (LCQ)] were evaluated before and 3 months after performing BT. RESULTS BT significantly improved both cough-related indices and C-CS in the cough-predominant group. Changes in C-CS were significantly correlated with changes in the LCQ scores (C5: r = 0.65, p = 0.02 for all patients, and r = 0.81, p = 0.01 for the cough-predominant group). CONCLUSIONS BT may be effective for cough in severe uncontrolled asthma by improving C-CS. However, further larger cohort studies are necessary to confirm the effect of BT for cough in asthma. CLINICAL TRIAL REGISTRATION This study was registered in the UMIN Clinical Trials Registry (Registry ID UMIN: 000031982).
Collapse
Affiliation(s)
- Hirono Nishiyama
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshihiro Kanemitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Johsuke Hara
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Kensuke Fukumitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Norihisa Takeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ryota Kurokawa
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Keima Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tomoko Tajiri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Fukuda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takehiro Uemura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hirotsugu Ohkubo
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ken Maeno
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Oguri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masaya Takemura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
13
|
Fong KY, Zhao JJ, Syn NL, Nair P, Chan YH, Lee P. Comparing bronchial thermoplasty with biologicals for severe asthma: Systematic review and network meta-analysis. Respir Med 2023:107302. [PMID: 37257786 DOI: 10.1016/j.rmed.2023.107302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/12/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Bronchial thermoplasty (BT) has shown favorable safety and efficacy in several randomized controlled trials (RCTs), but has not been directly compared to biological therapies. METHODS Electronic literature searches were performed on PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials, to retrieve RCTs of BT or FDA-approved biologicals against controls in patients with severe asthma. Six outcomes were analyzed: Asthma Control Questionnaire (ACQ), Asthma Quality of Life Questionnaire (AQLQ), the number of patients experiencing ≥1 asthma exacerbation, annualized exacerbation rate ratio (AERR), oral corticosteroid dose reduction (OCDR), and morning peak expiratory flow rate (amPEF). Random-effects, Frequentist network meta-analysis (NMA) were performed, and therapies were ranked using P-scores. RESULTS Twenty-nine RCTs (15,547 patients) were included. Fewer patients treated with BT experienced ≥1 asthma exacerbation (risk ratio [RR] = 0.66, 95%CI = 0.45-0.98) compared to control. AERR of BT versus control was non-significant, but significant improvements in ACQ score (mean difference [MD] -0.41, 95%CI -0.63 to -0.20), AQLQ score (MD = 0.54, 95%CI = 0.30-0.77), amPEF and OCDR were found. No significant differences between BT and biologics were seen across indirect comparisons of all studies. CONCLUSIONS Despite the lack of head-to-head comparative trials, this NMA suggests that BT is non-inferior to biologicals in terms of quality-of-life scores, and represents a promising alternative for patients with severe asthma.
Collapse
Affiliation(s)
- Khi Yung Fong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joseph J Zhao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas L Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare Hamilton, Ontario, Canada
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Pyng Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Respiratory and Critical Care Medicine, National University Hospital, Singapore.
| |
Collapse
|
14
|
Wijsman PC, Goorsenberg AWM, Ravi A, d’Hooghe JNS, Dierdorp BS, Dekker T, van Schaik CCLM, ten Hacken NHT, Shah PL, Weersink EJM, Bel EH, Annema JT, Lutter R, Bonta PI. Airway Inflammation Before and After Bronchial Thermoplasty in Severe Asthma. J Asthma Allergy 2022; 15:1783-1794. [PMID: 36560975 PMCID: PMC9767029 DOI: 10.2147/jaa.s383418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/30/2022] [Indexed: 12/23/2022] Open
Abstract
Background Bronchial thermoplasty (BT) is a bronchoscopic treatment for severe asthma, of which the working mechanism and responder profile are partly unknown. The aim of this study is to analyse whether BT alters airway inflammation by epithelial gene expression, inflammatory cell counts and cytokines, and whether this relates to treatment response. Methods In this clinical trial, 28 severe asthma patients underwent bronchoscopy before and after treatment to obtain bronchial brushes and bronchoalveolar lavage fluid (BALF) from treated and untreated airways. RNA was extracted from bronchial brushes for transcriptome analysis, and BALF cells and cytokines were analysed. Asthma quality of life questionnaires were used to distinguish responders from non-responders. We compared results before and after treatment, between treated and untreated airways, and between responders and non-responders. Results Gene expression of airway epithelium related to airway inflammation gene set was significantly downregulated in treated airways compared to untreated airways, although this did not differ for patients before and after treatment. No differences were observed in cell counts and cytokines, neither from the untreated compared to treated airways, nor before and after treatment. At baseline, compared to non-responders, the expression of genes related to glycolysis in bronchial epithelium was downregulated and both BALF and blood eosinophil counts were higher in responders. Conclusion Local differences in gene sets pertaining to epithelial inflammatory status were identified between treated and untreated airways after treatment, not resulting in changes in differential cell counts and cytokine analyses in BALF. Secondly, baseline epithelial glycolysis genes and eosinophil counts in BALF and blood were different between responders and non-responders. The observations from this study demonstrate the potential impact of BT on epithelial gene expression related to airway inflammation while also identifying a possible responder profile.
Collapse
Affiliation(s)
- Pieta C Wijsman
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Annika W M Goorsenberg
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Abilash Ravi
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Julia N S d’Hooghe
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Barbara S Dierdorp
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Tamara Dekker
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Nick H T ten Hacken
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pallav L Shah
- Department of Pulmonology, Royal Brompton Hospital, London, UK
- National Heart & Lung Institute, Imperial College, London, UK
- Department of Pulmonology, Chelsea & Westminster Hospital, London, UK
| | - Els J M Weersink
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Elisabeth H Bel
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jouke T Annema
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - René Lutter
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter I Bonta
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Wijsman PC, Annema JT, Bonta PI. Knowledge gaps in the field of bronchial thermoplasty. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1087. [PMID: 36388778 PMCID: PMC9652547 DOI: 10.21037/atm-22-4894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2024]
Affiliation(s)
- Pieta C Wijsman
- Department of Pulmonary Medicine, Amsterdam University Medical Center (Amsterdam UMC), Location Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Jouke T Annema
- Department of Pulmonary Medicine, Amsterdam University Medical Center (Amsterdam UMC), Location Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Peter I Bonta
- Department of Pulmonary Medicine, Amsterdam University Medical Center (Amsterdam UMC), Location Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Hassoun D, Rose L, Blanc FX, Magnan A, Loirand G, Sauzeau V. Bronchial smooth muscle cell in asthma: where does it fit? BMJ Open Respir Res 2022; 9:9/1/e001351. [PMID: 36109087 PMCID: PMC9478857 DOI: 10.1136/bmjresp-2022-001351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/04/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a frequent respiratory condition whose pathophysiology relies on altered interactions between bronchial epithelium, smooth muscle cells (SMC) and immune responses. Those leads to classical hallmarks of asthma: airway hyper-responsiveness, bronchial remodelling and chronic inflammation. Airway smooth muscle biology and pathophysiological implication in asthma are now better understood. Precise deciphering of intracellular signalling pathways regulating smooth muscle contraction highlighted the critical roles played by small GTPases of Rho superfamily. Beyond contractile considerations, active involvement of airway smooth muscle in bronchial remodelling mechanisms is now established. Not only cytokines and growth factors, such as fibroblats growth factor or transforming growth factor-β, but also extracellular matrix composition have been demonstrated as potent phenotype modifiers for airway SMC. Although basic science knowledge has grown significantly, little of it has translated into improvement in asthma clinical practice. Evaluation of airway smooth muscle function is still limited to its contractile activity. Moreover, it relies on tools, such as spirometry, that give only an overall assessment and not a specific one. Interesting technics such as forced oscillometry or specific imagery (CT and MRI) give new perspectives to evaluate other aspects of airway muscle such as bronchial remodelling. Finally, except for the refinement of conventional bronchodilators, no new drug therapy directly targeting airway smooth muscle proved its efficacy. Bronchial thermoplasty is an innovative and efficient therapeutic strategy but is only restricted to a small proportion of severe asthmatic patients. New diagnostic and therapeutic strategies specifically oriented toward airway smooth muscle are needed to improve global asthma care.
Collapse
Affiliation(s)
- Dorian Hassoun
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Lindsay Rose
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| | - François-Xavier Blanc
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Antoine Magnan
- INRAe, UMR 0892, Hôpital Foch, Suresnes, France.,Université Versailles-Saint-Quentin-en-Yvelines Paris-Saclay, Versailles, France
| | - Gervaise Loirand
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| | - Vincent Sauzeau
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| |
Collapse
|
17
|
Ramakrishnan RK, Bajbouj K, Guimei M, Rawat SS, Kalaji Z, Hachim MY, Mahboub B, Ibrahim SM, Hamoudi R, Halwani R, Hamid Q. Bcl10 Regulates Lipopolysaccharide-Induced Pro-Fibrotic Signaling in Bronchial Fibroblasts from Severe Asthma Patients. Biomedicines 2022; 10:1716. [PMID: 35885021 PMCID: PMC9312497 DOI: 10.3390/biomedicines10071716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Subepithelial fibrosis is a characteristic hallmark of airway remodeling in asthma. Current asthma medications have limited efficacy in treating fibrosis, particularly in patients with severe asthma, necessitating a deeper understanding of the fibrotic mechanisms. The NF-κB pathway is key to airway inflammation in asthma, as it regulates the activity of multiple pro-inflammatory mediators that contribute to airway pathology. Bcl10 is a well-known upstream mediator of the NF-κB pathway that has been linked to fibrosis in other disease models. Therefore, we investigated Bcl10-mediated NF-κB activation as a potential pathway regulating fibrotic signaling in severe asthmatic fibroblasts. We demonstrate here the elevated protein expression of Bcl10 in bronchial fibroblasts and bronchial biopsies from severe asthmatic patients when compared to non-asthmatic individuals. Lipopolysaccharide (LPS) induced the increased expression of the pro-fibrotic cytokines IL-6, IL-8 and TGF-β1 in bronchial fibroblasts, and this induction was associated with the activation of Bcl10. Inhibition of the Bcl10-mediated NF-κB pathway using an IRAK1/4 selective inhibitor abrogated the pro-fibrotic signaling induced by LPS. Thus, our study indicates that Bcl10-mediated NF-κB activation signals increased pro-fibrotic cytokine expression in severe asthmatic airways. This reveals the therapeutic potential of targeting Bcl10 signaling in ameliorating inflammation and fibrosis, particularly in severe asthmatic individuals.
Collapse
Affiliation(s)
- Rakhee K. Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
| | - Khuloud Bajbouj
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
| | - Maha Guimei
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt;
| | - Surendra Singh Rawat
- College of Medicine, Mohammed Bin Rashid University, Dubai P.O. Box 505055, United Arab Emirates; (S.S.R.); (M.Y.H.)
| | - Zaina Kalaji
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
| | - Mahmood Y. Hachim
- College of Medicine, Mohammed Bin Rashid University, Dubai P.O. Box 505055, United Arab Emirates; (S.S.R.); (M.Y.H.)
| | - Bassam Mahboub
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
- Rashid Hospital, Dubai Health Authority, Dubai P.O. Box 4545, United Arab Emirates
| | - Saleh M. Ibrahim
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, 23562 Lübeck, Germany
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
- Immunology Research Lab, College of Medicine, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.K.R.); (K.B.); (Z.K.); (B.M.); (S.M.I.)
- Meakins-Christie Laboratories, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
18
|
Herth FJF, Kontogianni K, Brock J. Endoscopic Options for Moderate COPD, Chronic Bronchitis, and Uncontrolled Asthma. Semin Respir Crit Care Med 2022; 43:552-558. [PMID: 35649430 DOI: 10.1055/s-0042-1747939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Until now, interventional therapies for patients with chronic obstructive pulmonary disease have been available in the form of lung volume reduction procedures as end-stage options. Currently, the range of indications is expanding to include earlier stages of the diseases. Lung denervation is available for moderate COPD, and patients with chronic bronchitis are being evaluated for endoscopic goblet cell ablation. Rheoplasty, metered spray cryo technique, and Karakoca resector balloon are used for this indication. But also, for patients with severe uncontrolled asthma, several techniques are available today. In addition to thermoplasty as a long-proven procedure, new and currently under investigation is the targeted lung denervation.Most of these techniques are currently being tested in large pivotal trials and it will soon become clear in which phenotype which technique will be used in the different forms and stages of obstructive diseases. The current paper presents the techniques and the currently available literature.
Collapse
Affiliation(s)
- Felix J F Herth
- Department of Pneumology and Critical Care Medicine, Thoraxklinik and, Heidelberg, Germany.,Translational Lung Research Center (TLRCH), University of Heidelberg, Heidelberg, Germany
| | - Konstantina Kontogianni
- Department of Pneumology and Critical Care Medicine, Thoraxklinik and, Heidelberg, Germany.,Translational Lung Research Center (TLRCH), University of Heidelberg, Heidelberg, Germany
| | - Judith Brock
- Department of Pneumology and Critical Care Medicine, Thoraxklinik and, Heidelberg, Germany.,Translational Lung Research Center (TLRCH), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Saunders RM, Biddle M, Amrani Y, Brightling CE. Stressed out - The role of oxidative stress in airway smooth muscle dysfunction in asthma and COPD. Free Radic Biol Med 2022; 185:97-119. [PMID: 35472411 DOI: 10.1016/j.freeradbiomed.2022.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
The airway smooth muscle (ASM) surrounding the airways is dysfunctional in both asthma and chronic obstructive pulmonary disease (COPD), exhibiting; increased contraction, increased mass, increased inflammatory mediator release and decreased corticosteroid responsiveness. Due to this dysfunction, ASM is a key contributor to symptoms in patients that remain symptomatic despite optimal provision of currently available treatments. There is a significant body of research investigating the effects of oxidative stress/ROS on ASM behaviour, falling into the following categories; cigarette smoke and associated compounds, air pollutants, aero-allergens, asthma and COPD relevant mediators, and the anti-oxidant Nrf2/HO-1 signalling pathway. However, despite a number of recent reviews addressing the role of oxidative stress/ROS in asthma and COPD, the potential contribution of oxidative stress/ROS-related ASM dysfunction to asthma and COPD pathophysiology has not been comprehensively reviewed. We provide a thorough review of studies that have used primary airway, bronchial or tracheal smooth muscle cells to investigate the role of oxidative stress/ROS in ASM dysfunction and consider how they could contribute to the pathophysiology of asthma and COPD. We summarise the current state of play with regards to clinical trials/development of agents targeting oxidative stress and associated limitations, and the adverse effects of oxidative stress on the efficacy of current therapies, with reference to ASM related studies where appropriate. We also identify limitations in the current knowledge of the role of oxidative stress/ROS in ASM dysfunction and identify areas for future research.
Collapse
Affiliation(s)
- Ruth M Saunders
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.
| | - Michael Biddle
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Yassine Amrani
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Christopher E Brightling
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
20
|
Facciolongo N, Bonacini M, Galeone C, Ruggiero P, Menzella F, Ghidoni G, Piro R, Scelfo C, Catellani C, Zerbini A, Croci S. Bronchial thermoplasty in severe asthma: a real-world study on efficacy and gene profiling. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:39. [PMID: 35534846 PMCID: PMC9087992 DOI: 10.1186/s13223-022-00680-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022]
Abstract
Background Bronchial thermoplasty (BT) is an effective treatment in severe asthma. How to select patients who more likely benefit from BT is an unmet clinical need. Moreover, mechanisms of BT efficacy are still largely unknown. We sought to determine BT efficacy and to identify potential mechanisms of response. Methods This retrospective cohort study evaluated clinical outcomes in 27 patients with severe asthma: 13 with T2-high and 14 with T2-low endotype. Expression levels of 20 genes were compared by real-time PCR in bronchial biopsies performed at the third BT session versus baseline. Clinical response was measured based on Asthma Control Questionnaire (ACQ) score < 1.5, asthma exacerbations < 2, oral corticosteroids reduction of at least 50% at 12 months post-BT. Patients were classified as responders when they had at least 2 of 3 outcome measures. Results 81% of patients were defined as responders. BT induced a reduction in alpha smooth muscle actin (ACTA2) and an increase in CD68, fibroblast activation protein-alpha (FAP), alpha-1 and alpha-2 type I collagen (COL1A1, COL1A2) gene expression in the majority of patients. A higher reduction in ubiquitin carboxy-terminal-hydrolase L1 (PGP9.5) mRNA correlated with a better response based on Asthma Quality of Life Questionnaire (AQLQ). Lower changes in CD68 and FAP mRNAs correlated with a better response based on ACQ. Lower levels of occludin (OCLN), CD68, connective tissue growth factor (CTGF), higher levels of secretory leukocyte protease inhibitor (SLPI) and lower changes in CD68 and CTGF mRNAs were observed in patients who had less than 2 exacerbations post-BT. Lower levels of COL1A2 at baseline were observed in patients who had ACQ < 1.5 at 12 months post-BT. Conclusions BT is effective irrespective of the asthma endotypes and seems associated with airway remodelling. Quantification of OCLN, CD68, CTGF, SLPI, COL1A2 mRNAs could be useful to identify patients with better results. Trial registration: The study protocol was approved by the Local Ethics Committee (Azienda USL-IRCCS of Reggio Emilia—Comitato Etico Area Vasta Nord of Emilia Romagna; protocol number: 2019/0014076) and all the patients provided written informed consent before participating in the study. Supplementary Information The online version contains supplementary material available at 10.1186/s13223-022-00680-4.
Collapse
Affiliation(s)
- Nicola Facciolongo
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Martina Bonacini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Carla Galeone
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Patrizia Ruggiero
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Menzella
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy. .,Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS, 42123, Reggio Emilia, Italy.
| | - Giulia Ghidoni
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Roberto Piro
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Scelfo
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Catellani
- Pneumology Unit, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandro Zerbini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Stefania Croci
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
21
|
Al Heialy S, Ramakrishnan RK, Hamid Q. Recent advances in the immunopathogenesis of severe asthma. J Allergy Clin Immunol 2022; 149:455-465. [DOI: 10.1016/j.jaci.2021.12.765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
|
22
|
Jendzjowsky N, Laing A, Malig M, Matyas J, de Heuvel E, Dumonceaux C, Dumoulin E, Tremblay A, Leigh R, Chee A, Kelly MM. Long-term modulation of airway remodelling in severe asthma following bronchial thermoplasty. Eur Respir J 2022; 59:2100622. [PMID: 34049950 DOI: 10.1183/13993003.00622-2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/16/2021] [Indexed: 11/05/2022]
Abstract
RationaleBronchial thermoplasty is a mechanical therapeutic intervention that has been advocated as an effective treatment option for severe asthma. The mechanism is promoted as being related to the attenuation of airway smooth muscle which has been shown to occur in the short-term. However, long-term studies of the effects of bronchial thermoplasty on airway remodelling are few, with only limited assessment of airway remodelling indices.ObjectivesTo evaluate the effect of bronchial thermoplasty on 1) airway epithelial and smooth muscle cells in culture and 2) airway remodelling in patients with severe asthma who have been prescribed bronchial thermoplasty up to 12 months post-treatment.MethodsThe distribution of heat within the airway by bronchial thermoplasty was assessed in a porcine model. Culture of human airway smooth muscle cells and bronchial epithelial cells evaluated the impact of thermal injury. Histological evaluation and morphometric assessment were performed on bronchial biopsies obtained from severe asthma patients at baseline, 6 weeks and 12 months following bronchial thermoplasty.ResultsBronchial thermoplasty resulted in heterogeneous heating of the airway wall. Airway smooth muscle cell cultures sustained thermal injury, whilst bronchial epithelial cells were relatively resistant to heat. Airway smooth muscle and neural bundles were significantly reduced at 6 weeks and 12 months post-treatment. At 6 weeks post-treatment, submucosal collagen was reduced and vessel density increased, with both indices returning to baseline at 12 months. Goblet cell numbers, submucosal gland area and sub-basement membrane thickness were not significantly altered at any time point examined.ConclusionsBronchial thermoplasty primarily affects airway smooth muscle and nerves with the effects still present at 12 months post-treatment.
Collapse
Affiliation(s)
- Nicholas Jendzjowsky
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Authors contributed equally
| | - Austin Laing
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Authors contributed equally
| | - Michelle Malig
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - John Matyas
- Dept of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Elaine de Heuvel
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Curtis Dumonceaux
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elaine Dumoulin
- Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alain Tremblay
- Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Richard Leigh
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alex Chee
- Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Authors contributed equally
| | - Margaret M Kelly
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Authors contributed equally
| |
Collapse
|
23
|
Liu Y, Wei L, He C, Chen R, Meng L. Lipoxin A4 inhibits ovalbumin-induced airway inflammation and airway remodeling in a mouse model of asthma. Chem Biol Interact 2021; 349:109660. [PMID: 34537180 DOI: 10.1016/j.cbi.2021.109660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
Asthma is a chronic respiratory disease, which is characterized by airway inflammation, remodeling and airway hyperresponsiveness. Airway remodeling is caused by long-term inflammation of the airways. Lipoxin A4 (LXA4) is a natural eicosanoid with powerful anti-inflammatory properties, and has been shown to serve a critical role in orchestrating pulmonary inflammation and airway hyper-responsiveness in asthmatic mice. However, its effect on airway remodeling is unknown. Female BALB/c mice were used to establish a mouse model of asthma which were sensitized and challenged by ovalbumin (OVA). LXA4 was intranasally administrated prior to the challenge. The results of our study indicated that LXA4 suppressed the OVA-induced inflammatory cell infiltration and T helper type 2 (Th2) cytokines secretion in the mouse model of asthma. Characteristics of airway remodeling, such as thickening of the bronchial wall and smooth muscle, overdeposition of collagen, and overexpression of α-smooth muscle actin (α-SMA) and collagen-I were reversed by LXA4. Furthermore, LXA4 suppressed the aberrant activation of the signal transducer and activator of transcription 3 (STAT3) pathway in the lung tissues of asthmatic mice. In conclusion, these findings demonstrated that LXA4 alleviated allergic airway inflammation and remodeling in asthmatic mice, which may be related to the inhibition of STAT3 pathway.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Li Wei
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Chao He
- Department of Gastrointestinal Surgery, Taian City Central Hospital, Taian, Shandong, China
| | - Ran Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Ling Meng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China.
| |
Collapse
|
24
|
Svenningsen S, Nair P, Eddy RL, McIntosh MJ, Kjarsgaard M, Lim HF, McCormack DG, Cox G, Parraga G. Bronchial thermoplasty guided by hyperpolarised gas magnetic resonance imaging in adults with severe asthma: a 1-year pilot randomised trial. ERJ Open Res 2021; 7:00268-2021. [PMID: 34589541 PMCID: PMC8473812 DOI: 10.1183/23120541.00268-2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/02/2021] [Indexed: 11/05/2022] Open
Abstract
Patient-specific localisation of ventilation defects using hyperpolarised gas magnetic resonance imaging (MRI) introduces the possibility of regionally targeted bronchial thermoplasty (BT) for the treatment of severe asthma. We aimed to demonstrate that BT guided by MRI to ventilation defects reduces the number of radiofrequency activations while resulting in improved asthma quality-of-life and control scores that are non-inferior to standard BT. In a 1-year pilot randomised controlled trial, 14 patients with severe asthma who were clinically eligible to receive BT underwent hyperpolarised gas MRI to characterise ventilation defects and were randomised to MRI-guided or standard BT. End-points were improved Asthma Quality of Life Questionnaire (AQLQ) and Asthma Control Questionnaire (ACQ) scores, the proportion of AQLQ and ACQ responders and the number of radiofrequency activations and bronchoscopy sessions. Participants who underwent MRI-guided BT received 53% fewer radiofrequency activations than those who had standard BT (p=0.003). At 12 months, the mean improvement from baseline was similar between the MRI-guided group (n=5) and the standard group (n=7) for AQLQ score (MRI-guided: 1.8, 95% CI 0.1-3.5, p=0.04; standard: 0.7, 95% CI -0.9-2.3, p=0.30) (p=0.25) and ACQ-5 score (MRI-guided: -1.4, 95% CI -2.6- -0.2, p=0.03; standard: -0.7, 95% CI -1.3-0.0, p=0.04) (p=0.17). A similar proportion of participants in both groups achieved a clinically relevant improvement in AQLQ score (MRI-guided: 80%; standard: 71%) and ACQ-5 score (MRI-guided: 80%; standard: 57%). Hyperpolarised gas MRI-guided BT reduced the number of radiofrequency activations, and resulted in asthma quality of life and control improvements at 12 months that were non-inferior to standard BT.
Collapse
Affiliation(s)
- Sarah Svenningsen
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Canada.,Dept of Medicine, Division of Respirology, McMaster University, Hamilton, Canada
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Canada.,Dept of Medicine, Division of Respirology, McMaster University, Hamilton, Canada
| | - Rachel L Eddy
- Robarts Research Institute, Western University, London, Canada.,Dept of Medical Biophysics, Western University, London, Canada
| | - Marrissa J McIntosh
- Robarts Research Institute, Western University, London, Canada.,Dept of Medical Biophysics, Western University, London, Canada
| | - Melanie Kjarsgaard
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Canada
| | - Hui Fang Lim
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Canada
| | - David G McCormack
- Dept of Medicine, Division of Respirology, Western University, London, Canada
| | - Gerard Cox
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Canada.,Dept of Medicine, Division of Respirology, McMaster University, Hamilton, Canada
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Canada.,Dept of Medical Biophysics, Western University, London, Canada
| |
Collapse
|
25
|
Aftab GM, Rehman S, Ahmad M, Akram A, Bukhari A. Bronchial Thermoplasty in Patients with Severe Persistent Asthma: A Literature Review. J Community Hosp Intern Med Perspect 2021; 11:518-522. [PMID: 34211661 PMCID: PMC8221120 DOI: 10.1080/20009666.2021.1936951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 11/05/2022] Open
Abstract
The literature review aimed to see the safety and efficacy of bronchial thermoplasty in patients with severe asthma. We searched the online database, PUBMED, using bronchial thermoplasty and asthma as the key words and including trials from 2007 to 2021. Our review found that bronchial thermoplasty reduces asthma-related hospitalizations, emergency room visits and asthma exacerbations with sustained benefits for 5-10 years. This came at the expense of increased asthma-related adverse events, most commonly during the 7 days immediately after the procedure. Adverse events from 6 weeks after procedure to up to 5 years were similar between the bronchial thermoplasty group and the medication-only group. Bronchial thermoplasty is a safe and efficacious treatment modality for patients with severe asthma.
Collapse
Affiliation(s)
- Ghulam Mustafa Aftab
- Division of Pulmonary Disease and Critical Care Medicine, Saint Peters University Hospital, New Brunswick, New Jersey, USA
| | - Sana Rehman
- Division of Internal Medicine Marshfield Clinic Health Center (Incoming Internal Medicine Resident)
| | - Mudassar Ahmad
- Division of Pulmonary Disease and Critical Care Medicine, Saint Peters University Hospital, New Brunswick, New Jersey, USA
| | - Ali Akram
- Division of Internal Medicine the Wright Center
| | - Amar Bukhari
- Division of Pulmonary Disease and Critical Care Medicine, Saint Peters University Hospital, New Brunswick, New Jersey, USA
| |
Collapse
|
26
|
Shapiro CO, Proskocil BJ, Oppegard LJ, Blum ED, Kappel NL, Chang CH, Fryer AD, Jacoby DB, Costello RW, Drake MG. Airway Sensory Nerve Density Is Increased in Chronic Cough. Am J Respir Crit Care Med 2021; 203:348-355. [PMID: 32809840 DOI: 10.1164/rccm.201912-2347oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rationale: Chronic cough is characterized by frequent urges to cough and a heightened sensitivity to inhaled irritants. Airway sensory nerves trigger cough. We hypothesized that sensory nerve density is increased in chronic cough, which may contribute to excessive and persistent coughing.Objectives: To measure airway nerve density (axonal length) and complexity (nerve branching, neuropeptide expression) in humans with and without chronic cough.Methods: Bronchoscopic human airway biopsies were immunolabeled for nerves and the sensory neuropeptide substance P. Eosinophil peroxidase was also quantified given previous reports showing associations between eosinophils and nerve density. Three-dimensional image z-stacks of epithelium and subepithelium were generated using confocal microscopy, and from these z-stacks, total nerve length, the number of nerve branch points, substance P expression, and eosinophil peroxidase were quantified within each airway compartment.Measurements and Main Results: Nerve length and the number of branch points were significantly increased in epithelium, but not subepithelium, in chronic cough compared with healthy airways. Substance P expression was scarce and was similar in chronic cough and healthy airways. Nerve length and branching were not associated with eosinophil peroxidase nor with demographics such as age and sex in either group.Conclusions: Airway epithelial sensory nerve density is increased in chronic cough, suggesting sensory neuroplasticity contributes to cough hypersensitivity.
Collapse
Affiliation(s)
- Clare O Shapiro
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Laura J Oppegard
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Emily D Blum
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Nicole L Kappel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Christopher H Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Richard W Costello
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| |
Collapse
|
27
|
Fang L, Li J, Papakonstantinou E, Karakioulaki M, Sun Q, Schumann D, Tamm M, Stolz D, Roth M. Secreted heat shock proteins control airway remodeling: Evidence from bronchial thermoplasty. J Allergy Clin Immunol 2021; 148:1249-1261.e8. [PMID: 33675818 DOI: 10.1016/j.jaci.2021.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Increased airway smooth muscle mass is a key pathology in asthma. Bronchial thermoplasty is a treatment for severe asthma based on selective heating of the airways that aims to reduce the mass of airway smooth muscle cells (ASMCs), and thereby bronchoconstriction. However, short heat exposure is insufficient to explain the long-lasting effect, and heat shock proteins (HSPs) have been suggested to play a role. OBJECTIVE We sought to determine the role of HSP70 and HSP90 in the control of airway wall remodeling by bronchial thermoplasty. METHODS Bronchoalveolar lavage fluid and endobronchial biopsies of 20 patients with severe asthma were obtained before and after thermoplasty. Isolated epithelial cells and ASMCs were exposed to 65oC for 10 seconds, mimicking thermoplasty. Proteins were determined by immunohistochemistry, Western blotting, immunofluorescence, and ELISA; proliferation by cell counts and antigen Ki67 (MKI67) expression. RESULTS Thermoplasty significantly increased the expression of HSP70 and HSP90 in the epithelium and bronchoalveolar lavage fluid. In ASMCs, thermoplasty reduced both HSPs. These cell-type-specific effects were detectable even 1 month after thermoplasty in tissue sections. In epithelial cells, ex vivo exposure to heat (65oC, 10 seconds) increased the expression and secretion of HSP70 and HSP90. In addition, epithelial cell proliferation was upregulated by heat or treatment with human recombinant HSP70 or HSP90. In ASMCs, heat exposure or exogenous HSPs reduced proliferation and differentiation. In both cell types, HSP70 and HSP90 activated the signaling cascade of serine/threonine-protein kinase →mammalian target of rapamycin→ribosomal protein S6 kinase 1 and CCAAT/enhancer binding protein-β→protein arginine methyltransferase 1→ mitochondria activity. CONCLUSIONS Epithelial cell-derived HSP70 and HSP90 improve the function of epithelial cells, but block ASMC remodeling.
Collapse
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Department of Biomedicine, University of Basel & University Hospital of Basel, Basel, Switzerland
| | - Junling Li
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Department of Biomedicine, University of Basel & University Hospital of Basel, Basel, Switzerland; The affiliated Dongguan Shilong People's Hospital of Southern Medical University, Guangdong, China
| | - Eleni Papakonstantinou
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Department of Biomedicine, University of Basel & University Hospital of Basel, Basel, Switzerland
| | - Meropi Karakioulaki
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Department of Biomedicine, University of Basel & University Hospital of Basel, Basel, Switzerland
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Desiree Schumann
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Department of Biomedicine, University of Basel & University Hospital of Basel, Basel, Switzerland
| | - Michael Tamm
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Department of Biomedicine, University of Basel & University Hospital of Basel, Basel, Switzerland
| | - Daiana Stolz
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Department of Biomedicine, University of Basel & University Hospital of Basel, Basel, Switzerland
| | - Michael Roth
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Department of Biomedicine, University of Basel & University Hospital of Basel, Basel, Switzerland.
| |
Collapse
|
28
|
IL-13 Augments Histone Demethylase JMJD2B/KDM4B Expression Levels, Activity, and Nuclear Translocation in Airway Fibroblasts in Asthma. J Immunol Res 2021; 2021:6629844. [PMID: 33688506 PMCID: PMC7920726 DOI: 10.1155/2021/6629844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose Asthma is one of the most common obstructive pulmonary diseases worldwide. Epigenetic alterations, including DNA methylation and histone modifications, have been reported to contribute to asthma pathogenesis. Since the inflammation mediator and remodeling trigger, IL-13, is known to play a central role in the pathophysiology of asthma, this study was aimed to identify novel IL-13-regulated epigenetic modifiers in asthma that may contribute to subepithelial fibrosis. Methods Publicly available transcriptomic datasets from Gene Expression Omnibus (GEO) were used to identify differentially expressed genes on an epigenetic level upon IL-13 exposure in lung fibroblasts. Bronchial fibroblasts isolated from healthy and asthmatic individuals were assessed for the gene and protein expression levels of the identified gene at baseline and upon IL-13 treatment using qRT-PCR and western blotting, respectively. Its subcellular localization and tissue distribution were examined in bronchial fibroblasts as well as bronchial biopsies by immunofluorescence and immunohistochemical analysis, respectively. Results Bioinformatic analysis revealed the differential expression of the histone demethylase JMJD2B/KDM4B, a well-known epigenetic modulator that leads to the demethylation of different lysine residues on histones, in IL-13-treated lung fibroblasts. The baseline expression levels of JMJD2B were higher in asthmatic fibroblasts and in bronchial biopsies in comparison to healthy ones. There was also an increase in JMJD2B activity as evidenced by the demethylation of its downstream target, H3K36me3. Furthermore, IL-13 stimulation induced JMJD2B expression and further demethylation of H3K36me3 in asthmatic fibroblasts. This was accompanied by increased translocation of JMJD2B into the nucleus. Conclusion This study highlights the novel pathological involvement of the histone demethylase JMJD2B/KDM4B in asthmatic airway fibroblasts that are regulated by IL-13. Clinical implications. Given that there is no single therapeutic medicine to effectively treat the various subtypes of asthma, this study provides promising insights into JMJD2B as a new therapeutic target that could potentially improve the treatment and management of asthma.
Collapse
|
29
|
Zhu MX, Huang LH, Zhu YK, Cai XJ. LncRNA NEAT1 promotes airway smooth muscle cell inflammation by activating the JAK3/STAT5 pathway through targeting of miR-139. Exp Lung Res 2021; 47:161-172. [PMID: 33590796 DOI: 10.1080/01902148.2021.1876792] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Asthma is a chronic inflammatory heterogeneous respiratory disease. Previous studies showed that the lncRNA NEAT1 (nuclear paraspeckle assembly transcript 1) might play an important role in the pathogenesis of asthma, but its potential mechanism in airway smooth muscle cell (ASMC) inflammation remains largely unknown and needs further investigation.Methods We performed cellular immunofluorescence to identify the features of ASMCs and detected the expression levels of lncRNA NEAT1, miR-139, TNF-α, IL-6, IL-8 and IL-1β by quantitative real-time PCR (Q-PCR) and ELISA. Western blotting (WB) was used to measure the protein expression of the related genes, and bioinformatics as well as dual luciferase assays were used to validate the interaction between lncRNA NEAT1 and miR-139 and the interaction between miR-139 and the 3'-UTR of JAK3.Results The expression of lncRNA NEAT1 was increased in the ASMCs of asthma patients, but miR-139 was decreased. Overexpression of lncRNA NEAT1 promoted the expression of the inflammatory cytokines such as TNF-α, IL-6, IL-8 and IL-1β in ASMCs. LncRNA NEAT1 was able to target miR-139 to activate the JAK3/STAT5 signaling pathway and induced the expression of these inflammatory cytokines in ASMCs. Overexpression of miR-139 or suppression of the JAK3/STAT5 signaling pathway reversed the inflammatory effect of lncRNA NEAT1.Conclusion LncRNA NEAT1 played a pivotal role in ASMC inflammation and exerted its function through the miR-139/JAK3/STAT5 signaling network.
Collapse
Affiliation(s)
- Meng-Xia Zhu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou, Hainan Province, China
| | - Lin-Hui Huang
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou, Hainan Province, China
| | - Yi-Ke Zhu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou, Hainan Province, China
| | - Xing-Jun Cai
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou, Hainan Province, China
| |
Collapse
|
30
|
Amrani Y, Panettieri RA, Ramos-Ramirez P, Schaafsma D, Kaczmarek K, Tliba O. Important lessons learned from studies on the pharmacology of glucocorticoids in human airway smooth muscle cells: Too much of a good thing may be a problem. Pharmacol Ther 2020; 213:107589. [PMID: 32473159 PMCID: PMC7434707 DOI: 10.1016/j.pharmthera.2020.107589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are the treatment of choice for chronic inflammatory diseases such as asthma. Despite proven effective anti-inflammatory and immunosuppressive effects, long-term and/or systemic use of GCs can potentially induce adverse effects. Strikingly, some recent experimental evidence suggests that GCs may even exacerbate some disease outcomes. In asthma, airway smooth muscle (ASM) cells are among the targets of GC therapy and have emerged as key contributors not only to bronchoconstriction, but also to airway inflammation and remodeling, as implied by experimental and clinical evidence. We here will review the beneficial effects of GCs on ASM cells, emphasizing the differential nature of GC effects on pro-inflammatory genes and on other features associated with asthma pathogenesis. We will also summarize evidence describing how GCs can potentially promote pro-inflammatory and remodeling features in asthma with a specific focus on ASM cells. Finally, some of the possible solutions to overcome these unanticipated effects of GCs will be discussed.
Collapse
Affiliation(s)
- Yassine Amrani
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester Biomedical Research Center Respiratory, Leicester, UK
| | - Reynold A Panettieri
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Patricia Ramos-Ramirez
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | | | - Klaudia Kaczmarek
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | - Omar Tliba
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA.
| |
Collapse
|
31
|
Ramakrishnan RK, Bajbouj K, Al Heialy S, Mahboub B, Ansari AW, Hachim IY, Rawat S, Salameh L, Hachim MY, Olivenstein R, Halwani R, Hamoudi R, Hamid Q. IL-17 Induced Autophagy Regulates Mitochondrial Dysfunction and Fibrosis in Severe Asthmatic Bronchial Fibroblasts. Front Immunol 2020; 11:1002. [PMID: 32670268 PMCID: PMC7326148 DOI: 10.3389/fimmu.2020.01002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/27/2020] [Indexed: 01/15/2023] Open
Abstract
The accumulation of fibroblasts, their synthesis of extracellular matrix (ECM) proteins and their innate resistance to apoptosis are characteristics of subepithelial fibrosis observed in severe asthma. Interleukin-17 (IL-17) is an important regulator of airway remodeling in asthma. However, the contribution of IL-17 to the pro-fibrotic phenotype of bronchial fibroblasts is not well-characterized. In this study, we investigated whether IL-17 induced autophagy regulates mitochondrial and pro-fibrotic function in bronchial fibroblasts. The primary cultured bronchial fibroblasts isolated from non-asthmatic (NHBF) and severe asthmatic (DHBF) subjects were treated with IL-17 in order to ascertain its effect on mitochondrial function, mitochondrial quality control, and apoptosis using immunoblotting and flow cytometric analyses. At baseline, DHBF exhibited higher levels of mitophagy and mitochondrial biogenesis compared to NHBF. Immunohistochemical evaluation of bronchial biopsies showed intense PINK1 immunoreactivity in severe asthma than in control. IL-17 intensified the mitochondrial dysfunction and impaired the mitochondrial quality control machinery in NHBF and DHBF. Moreover, IL-17 augmented a pro-fibrotic and anti-apoptotic response in both group of fibroblasts. Inhibition of autophagy using bafilomycin-A1 reduced PINK1 expression in NHBF and restored the IL-17 mediated changes in PINK1 to their basal levels in DHBF. Bafilomycin-A1 also reversed the IL-17 associated fibrotic response in these fibroblasts, suggesting a role for IL-17 induced autophagy in the induction of fibrosis in bronchial fibroblasts. Taken together, our findings suggest that IL-17 induced autophagy promotes mitochondrial dysfunction and fibrosis in bronchial fibroblasts from both non-asthmatic and severe asthmatic subjects. Our study provides insights into the therapeutic potential of targeting autophagy in ameliorating fibrosis, particularly in severe asthmatic individuals.
Collapse
Affiliation(s)
- Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University, Dubai, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Bassam Mahboub
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Abdul Wahid Ansari
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ibrahim Y Hachim
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Surendra Rawat
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Laila Salameh
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Mahmood Y Hachim
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Rabih Halwani
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research - College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| |
Collapse
|
32
|
Thomson NC. Recent Developments In Bronchial Thermoplasty For Severe Asthma. J Asthma Allergy 2019; 12:375-387. [PMID: 31819539 PMCID: PMC6875488 DOI: 10.2147/jaa.s200912] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Bronchial thermoplasty is approved in many countries worldwide as a non-pharmacological treatment for severe asthma. This review summarizes recent publications on the selection of patients with severe asthma for bronchial thermoplasty, predictors of a beneficial response and developments in the procedure and discusses specific issues about bronchial thermoplasty including effectiveness in clinical practice, mechanism of action, cost-effectiveness, and place in management. RESULTS Bronchial thermoplasty is a treatment option for patients with severe asthma after assessment and management of causes of difficult-to-control asthma, such as nonadherence, poor inhaler technique, comorbidities, under treatment, and other behavioral factors. Patients treated with bronchial thermoplasty in clinical practice have worse baseline characteristics and comparable clinical outcomes to clinical trial data. Bronchial thermoplasty causes a reduction in airway smooth muscle mass although it is uncertain whether this effect explains its efficacy since other mechanisms of action may be relevant, such as alterations in airway epithelial, gland, and/or nerve function; improvements in small airway function; or a placebo effect. The cost-effectiveness of bronchial thermoplasty is greater in countries where the costs of hospitalization and emergency department are high. The place of bronchial thermoplasty in the management of severe asthma is not certain, although some experts propose that bronchial thermoplasty should be considered for patients with severe asthma associated with non-type 2 inflammation or who fail to respond favorably to biologic therapies targeting type 2 inflammation. CONCLUSION Bronchial thermoplasty is a modestly effective treatment for severe asthma after assessment and management of causes of difficult-to-control asthma. Asthma morbidity increases during and shortly after treatment. Follow-up studies provide reassurance on the long-term safety of the procedure. Uncertainties remain about predictors of response, mechanism(s) of action, and place in management of severe asthma.
Collapse
Affiliation(s)
- Neil C Thomson
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
33
|
Jendzjowsky NG, Kelly MM. The Role of Airway Myofibroblasts in Asthma. Chest 2019; 156:1254-1267. [PMID: 31472157 DOI: 10.1016/j.chest.2019.08.1917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/14/2019] [Accepted: 08/11/2019] [Indexed: 12/17/2022] Open
Abstract
Airway remodeling is a characteristic feature of asthma and is thought to play an important role in the pathogenesis of airway hyperresponsiveness. Myofibroblasts are key structural cells involved in injury and repair, and there is evidence that dysregulation of their normal function contributes to airway remodeling. Despite the importance of myofibroblasts, a lack of specific cellular markers and inconsistent nomenclature have limited recognition of their key role in airway remodeling. Myofibroblasts are increased several-fold in the airways in asthma, in proportion to the severity of the disease. Myofibroblasts are postulated to be derived from both tissue-resident and bone marrow-derived cells, depending on the stage of injury and the tissue. A small number of studies have demonstrated attenuation of myofibroblast numbers and also reversal of established myofibroblast populations in asthma and other inflammatory processes. In this article, we review what is currently known about the biology of myofibroblasts in the airways in asthma and identify potential targets to reduce or reverse the remodeling process. However, further translational research is required to better understand the mechanistic role of the myofibroblast in asthma.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Margaret M Kelly
- Airway Inflammation Research Group, Snyder Institute for Chronic Disease, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada; Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
34
|
Abstract
Current management of severe asthma relying either on guidelines (bulk approach) or on disease phenotypes (stratified approach) did not improve the burden of the disease. Several severe phenotypes are described: clinical, functional, morphological, inflammatory, molecular and microbiome-related. However, phenotypes do not necessarily relate to or give insights into the underlying pathogenetic mechanisms which are described by the disease endotypes. Based on the major immune-inflammatory pathway involved type-2 high, type-2 low and mixed endotypes are described for severe asthma, with several shared pathogenetic pathways such as genetic and epigenetic, metabolic, neurogenic and remodelling subtypes. The concept of multidimensional endotyping as un unbiased approach to severe asthma is discussed, together with new tools and targets facilitating the shift from the stratified to the precision medicine approach.
Collapse
|