1
|
Tafadzwa Z, Steven J. A critical review of innovative strategies for the sustainable management of solid waste generated in the health institutions of Zimbabwe. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:611. [PMID: 40301144 DOI: 10.1007/s10661-025-14043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/15/2025] [Indexed: 05/01/2025]
Abstract
Innovative frameworks and strategies for solid waste management have been brought forward by researchers to solve the phenomenon of accumulating waste in the environment globally. The sustainability of medical waste management then pivots on the ability of waste management in a way that proves harmless to humans, animals, plants and the environment at large. This review looks into the strategies for the sustainable management of solid waste generated in the health institutions of Zimbabwe. Waste management includes waste generation, waste segregation, waste storage, waste collection and transportation, waste treatment and disposal and waste reuse and recycling. Exhaustive literature review was conducted as the methodology for this review soliciting information on the solid medical waste management status worldwide. In Zimbabwe, hazardous medical solid waste segregation, storage, transportation and disposal is a responsibility of the medical institutions generating the waste. These include trip and fall hazards, infectious hazards, cuts and lacerations, drugs addictions and radioactive hazards. The environment also faces contamination to the land, underground water bodies through leaching, surface water bodies, damage to flora, poisoning of fauna and contamination of the atmosphere by methane and carbon monoxide. Findings of the study show that innovations for medical solid waste management include frameworks such as the Ladder of Lansink and the three 'R's. Innovative technologies include rotary kiln incinerators, automated segregation and engineered landfills. Therefore, the framework addresses issues impeding the adoption of these innovative strategies in Zimbabwe.
Collapse
Affiliation(s)
- Zhavairo Tafadzwa
- Department of Geography, Environmental Sustainability and Resilience Building, Midlands State University, P. Box 9055, Gweru, Zimbabwe.
| | - Jerie Steven
- Department of Geography, Environmental Sustainability and Resilience Building, Midlands State University, P. Box 9055, Gweru, Zimbabwe
| |
Collapse
|
2
|
Herrera S, Roca I, Del Río A, Fernández J, Pitart C, Fortes I, Torralbo B, Santana G, Parejo-González R, Veà-Baró A, Campistol JM, Aguilar M, Degea S, Casals-Pascual C, Soriano A, Martínez JA. Performance of an Autonomous Sanitary Sterilisation Ultraviolet Machine (ASSUM) on terminal disinfection of surgical theaters and rooms of an intensive-intermediate care unit. Infect Prev Pract 2024; 6:100396. [PMID: 39308772 PMCID: PMC11415570 DOI: 10.1016/j.infpip.2024.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Background Ultraviolet- C (UV-C) light is effective for reducing environmental bioburden in hospitals, and the use of robots to deliver it may be advantageous. Aim To evaluate the feasibility and clinical efficacy of an autonomous programmable UV-C robot in surgical and intensive care unit (ICU) rooms of a tertiary hospital. Method During ten consecutive months, the device was used in six theatres where cardiac, colorectal and orthopaedic surgeries were performed, and in the rooms previously occupied by patients subjected to contact precautions of a 14-bed ICU. Surgical site infection (SSI) rates of procedures performed in the UV-cleaned theatres were compared with those of the previous year. Incidence in clinical samples of ICU-acquired multiple-drug resistant (MDR) microorganisms was compared with that of the same period of the previous year. An UV-C exposure study done by semi-quantitative dosimeters and a survey of the bioburden on surfaces were carried out. Findings SSI rates in the pre- and post-intervention periods were 8.67% (80/922) and 7.5% (61/813), respectively (p=0.37). Incidence of target microorganisms in clinical samples remained unchanged (38.4 vs. 39.4 per 10,000 patient-days, p=0.94). All the dosimeters exposed to ≤1 meter received ≥500 mJ/cm2. The bacterial load on surfaces decreased after the intervention, particularly in ICU rooms (from 4.57±7.4 CFU to 0.27±0.8 CFU, p<0.0001). Conclusion Deployment of an UV-C robot in surgical and ICU rooms is feasible, ensures adequate delivery of germicidal UV-C light and reduces the environmental bacterial burden. Rates of surgical site infections or acquisition of MDR in clinical samples of critically-ill patients remained unchanged.
Collapse
Affiliation(s)
- Sabina Herrera
- Infectious Disease Service, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignasi Roca
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Ana Del Río
- Infectious Disease Service, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Fernández
- Liver ICU, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS and CIBERehd, Spain
- EF Clif, EASL-CLIF Consortium, Barcelona, Spain
- CovidWarriors, Barcelona, Spain
| | - Cristina Pitart
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Isabel Fortes
- Preventive Medicine Service, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Blanca Torralbo
- Preventive Medicine Service, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Gemina Santana
- Preventive Medicine Service, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Romina Parejo-González
- Preventive Medicine Service, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Andreu Veà-Baró
- Andreu Veà, Ph.D. advisor to the CEO (on Digital-Transformation & Optimization) Hospital Clinic Barcelona CovidWarrior, Barcelona, Spain
| | - Josep Maria Campistol
- Hospital Clínic, University of Barcelona, August Pi i Sunyer Biomedical Research Institute Barcelona, Spain
| | - Mireia Aguilar
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Sergi Degea
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Climent Casals-Pascual
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, Biomedical Diagnostic Center (CDB) and ISGlobal, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Alex Soriano
- Infectious Disease Service, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José A. Martínez
- Infectious Disease Service, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Rasmussen MK, Schneider-Kamp A, Hyrup T, Godono A. New colleague or gimmick hurdle? A user-centric scoping review of the barriers and facilitators of robots in hospitals. PLOS DIGITAL HEALTH 2024; 3:e0000660. [PMID: 39527608 PMCID: PMC11554139 DOI: 10.1371/journal.pdig.0000660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Healthcare systems are confronted with a multitude of challenges, including the imperative to enhance accessibility, efficiency, cost-effectiveness, and the quality of healthcare delivery. These challenges are exacerbated by current healthcare personnel shortages, prospects of future shortfalls, insufficient recruitment efforts, increasing prevalence of chronic diseases, global viral concerns, and ageing populations. To address this escalating demand for healthcare services, healthcare systems are increasingly adopting robotic technology and artificial intelligence (AI), which promise to optimise costs, improve working conditions, and increase the quality of care. This article focuses on deepening our understanding of the barriers and facilitators associated with integrating robotic technologies in hospital environments. To this end, we conducted a scoping literature review to consolidate emerging themes pertaining to the experiences, viewpoints perspectives, and behaviours of hospital employees as professional users of robots in hospitals. Through screening 501 original research articles from Web-of-Science, we identified and reviewed in full-text 40 pertinent user-centric studies of the integration of robots into hospitals. Our review revealed and analysed 14 themes in-depth, of which we identified seven as barriers and seven as facilitators. Through a structuring of the barriers and facilitators, we reveal a notable misalignment between these barriers and facilitators: Finding that organisational aspects are at the core of most barriers, we suggest that future research should investigate the dynamics between hospital employees as professional users and the procedures and workflows of the hospitals as institutions, as well as the ambivalent role of anthropomorphisation of hospital robots, and emerging issues of privacy and confidentiality raised by increasingly communicative robots. Ultimately, this perspective on the integration of robots in hospitals transcends debates on the capabilities and limits of the robotic technology itself, shedding light on the complexity of integrating new technologies into hospital environments and contributing to an understanding of possible futures in healthcare innovation.
Collapse
Affiliation(s)
| | - Anna Schneider-Kamp
- Department of Business & Management, University of Southern Denmark, Denmark
| | - Tobias Hyrup
- Department of Mathematics and Computer Science, University of Southern Denmark, Denmark
| | - Alessandro Godono
- Department of Public Health and Pediatrics, University of Torino, Italy
| |
Collapse
|
4
|
Lucarelli V, Amodeo D, de Palma I, Nante N, Cevenini G, Messina G. The potential role of violet-blue light to preventing hospital acquired infections: a systematic review. Front Public Health 2024; 12:1474295. [PMID: 39512717 PMCID: PMC11540779 DOI: 10.3389/fpubh.2024.1474295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Healthcare-associated infections (HAIs) are a major challenge in modern healthcare, leading to increased mortality, financial burden and negative societal impact. The World Health Organization (WHO) and others have highlighted the alarming rise in HAIs, exacerbated by antimicrobial resistance (AMR), which further complicates treatment. The efficacy of violet-blue light (VBL) technology (approximately 405–420 nm) in inactivating various pathogens and its safety for human exposure have been extensively studied. This study analyses the scientific literature on the use of VBL as a disinfection method in health care settings, with cost and safety implications. It discusses VBL in comparison to other disinfection methods, the implications of its use, and its potential in reducing HAIs due to its ability to be used in occupied environments. While UV technology is more effective at bacterial inactivation, the continuous application of VBL compensates for this difference. UV and VBL technologies have a positive environmental impact, eliminating the need for consumables and reducing waste. Safety concerns are very limited for VBL compared to UV when properly used. The literature highlights that implementing VBL can be a significant step in continuous environmental disinfection in both healthcare and domestic settings. VBL is safe for occupants and offers a feasible, green method for combating environmental contamination and potentially reducing HAIs.
Collapse
Affiliation(s)
- Valentina Lucarelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Davide Amodeo
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Isa de Palma
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Nicola Nante
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Gabriele Cevenini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Gabriele Messina
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Ernst F, Osburg J, Tüshaus L. SonoBox: development of a robotic ultrasound tomograph for the ultrasound diagnosis of paediatric forearm fractures. Front Robot AI 2024; 11:1405169. [PMID: 39233849 PMCID: PMC11371668 DOI: 10.3389/frobt.2024.1405169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/16/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Paediatric forearm fractures are a prevalent reason for medical consultation, often requiring diagnostic X-rays that present a risk due to ionising radiation, especially concerning given the sensitivity of children's tissues. This paper explores the efficacy of ultrasound imaging, particularly through the development of the SonoBox system, as a safer, non-ionising alternative. With emerging evidence supporting ultrasound as a viable method for fracture assessment, innovations like SonoBox will become increasingly important. Materials and methods In our project, we want to advance ultrasound-based, contact-free, and automated cross-sectional imaging for diagnosing paediatric forearm fractures. To this end, we are building a technical platform that navigates a commercially available ultrasound probe around the extremity within a water-filled tank, utilising intelligent robot control and image processing methods to generate a comprehensive ultrasound tomogram. Safety and hygiene considerations, gender and diversity relevance, and the potential reduction of radiation exposure and examination pain are pivotal aspects of this endeavour. Results Preliminary experiments have demonstrated the feasibility of rapidly generating ultrasound tomographies in a water bath, overcoming challenges such as water turbulence during probe movement. The SonoBox prototype has shown promising results in transmitting position data for ultrasound imaging, indicating potential for autonomous, accurate, and potentially painless fracture diagnosis. The project outlines further goals, including the construction of prototypes, validation through patient studies, and development of a hygiene concept for clinical application. Conclusion The SonoBox project represents a significant step forward in paediatric fracture diagnostics, offering a safer, more comfortable alternative to traditional X-ray imaging. By automating the imaging process and removing the need for direct contact, SonoBox has the potential to improve clinical efficiency, reduce patient discomfort, and broaden the scope of ultrasound applications. Further research and development will focus on validating its effectiveness in clinical settings and exploring its utility in other medical and veterinary applications.
Collapse
Affiliation(s)
- Floris Ernst
- Institute of Robotics and Cognitive Systems, University of Lübeck, Lübeck, Germany
| | - Jonas Osburg
- Institute of Robotics and Cognitive Systems, University of Lübeck, Lübeck, Germany
| | - Ludger Tüshaus
- Department of Paediatric Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
6
|
Guo P, Luo D, Wu Y, He S, Deng J, Yao H, Sun W, Zhang J. Coverage Planning for UVC Irradiation: Robot Surface Disinfection Based on Swarm Intelligence Algorithm. SENSORS (BASEL, SWITZERLAND) 2024; 24:3418. [PMID: 38894209 PMCID: PMC11174843 DOI: 10.3390/s24113418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Ultraviolet (UV) radiation has been widely utilized as a disinfection strategy to effectively eliminate various pathogens. The disinfection task achieves complete coverage of object surfaces by planning the motion trajectory of autonomous mobile robots and the UVC irradiation strategy. This introduces an additional layer of complexity to path planning, as every point on the surface of the object must receive a certain dose of irradiation. Nevertheless, the considerable dosage required for virus inactivation often leads to substantial energy consumption and dose redundancy in disinfection tasks, presenting challenges for the implementation of robots in large-scale environments. Optimizing energy consumption of light sources has become a primary concern in disinfection planning, particularly in large-scale settings. Addressing the inefficiencies associated with dosage redundancy, this study proposes a dose coverage planning framework, utilizing MOPSO to solve the multi-objective optimization model for planning UVC dose coverage. Diverging from conventional path planning methodologies, our approach prioritizes the intrinsic characteristics of dose accumulation, integrating a UVC light efficiency factor to mitigate dose redundancy with the aim of reducing energy expenditure and enhancing the efficiency of robotic disinfection. Empirical trials conducted with autonomous disinfecting robots in real-world settings have corroborated the efficacy of this model in deactivating viruses.
Collapse
Affiliation(s)
- Peiyao Guo
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China; (P.G.); (D.L.); (Y.W.); (S.H.); (J.D.)
| | - Dekun Luo
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China; (P.G.); (D.L.); (Y.W.); (S.H.); (J.D.)
| | - Yizhen Wu
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China; (P.G.); (D.L.); (Y.W.); (S.H.); (J.D.)
| | - Sheng He
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China; (P.G.); (D.L.); (Y.W.); (S.H.); (J.D.)
| | - Jianyu Deng
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China; (P.G.); (D.L.); (Y.W.); (S.H.); (J.D.)
| | - Huilu Yao
- School of Electrical Engineering, Guangxi University, Nanning 530004, China;
| | - Wenhong Sun
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China; (P.G.); (D.L.); (Y.W.); (S.H.); (J.D.)
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Nanning 530004, China
- Third Generation Semiconductor Industry Research Institute, Guangxi University, Nanning 530004, China
| | - Jicai Zhang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China;
| |
Collapse
|
7
|
Ashique S, Mishra N, Mohanto S, Garg A, Taghizadeh-Hesary F, Gowda BJ, Chellappan DK. Application of artificial intelligence (AI) to control COVID-19 pandemic: Current status and future prospects. Heliyon 2024; 10:e25754. [PMID: 38370192 PMCID: PMC10869876 DOI: 10.1016/j.heliyon.2024.e25754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
The impact of the coronavirus disease 2019 (COVID-19) pandemic on the everyday livelihood of people has been monumental and unparalleled. Although the pandemic has vastly affected the global healthcare system, it has also been a platform to promote and develop pioneering applications based on autonomic artificial intelligence (AI) technology with therapeutic significance in combating the pandemic. Artificial intelligence has successfully demonstrated that it can reduce the probability of human-to-human infectivity of the virus through evaluation, analysis, and triangulation of existing data on the infectivity and spread of the virus. This review talks about the applications and significance of modern robotic and automated systems that may assist in spreading a pandemic. In addition, this study discusses intelligent wearable devices and how they could be helpful throughout the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, 474005, Madhya Pradesh, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, M.P, 483001, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran
| | - B.H. Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, BT9 7BL, UK
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
8
|
Weber DJ, Rutala WA, Anderson DJ, Sickbert-Bennett EE. ..úNo touch..Ñ methods for health care room disinfection: Focus on clinical trials. Am J Infect Control 2023; 51:A134-A143. [PMID: 37890944 DOI: 10.1016/j.ajic.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Hospital patient room surfaces are frequently contaminated with multidrug-resistant organisms. Since studies have demonstrated that inadequate terminal room disinfection commonly occurs, ..úno touch..Ñ methods of terminal room disinfection have been developed such as ultraviolet light (UV) devices and hydrogen peroxide (HP) systems. METHODS This paper reviews published clinical trials of ..úno touch..Ñ methods and ..úself-disinfecting..Ñ surfaces. RESULTS Multiple papers were identified including clinical trials of UV room disinfection devices (N.ß=.ß20), HP room disinfection systems (N.ß=.ß8), handheld UV devices (N.ß=.ß1), and copper-impregnated or coated surfaces (N.ß=.ß5). Most but not all clinical trials of UV devices and HP systems for terminal disinfection demonstrated a reduction of colonization/infection in patients subsequently housed in the room. Copper-coated surfaces were the only ..úself-disinfecting..Ñ technology evaluated by clinical trials. Results of these clinical trials were mixed. DISCUSSION Almost all clinical trials reviewed used a ..úweak..Ñ design (eg, before-after) and failed to assess potential confounders (eg, compliance with hand hygiene and environmental cleaning). CONCLUSIONS The evidence is strong enough to recommend the use of a ..úno-touch..Ñ method as an adjunct for outbreak control, mitigation strategy for high-consequence pathogens (eg, Candida auris or Ebola), or when there are an excessive endemic rates of multidrug-resistant organisms.
Collapse
Affiliation(s)
- David J Weber
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC; Department of Infection Prevention, UNC Medical Center, Chapel Hill, NC.
| | - William A Rutala
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Deverick J Anderson
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Duke University School of Medicine, Durham, NC
| | - Emily E Sickbert-Bennett
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC; Department of Infection Prevention, UNC Medical Center, Chapel Hill, NC
| |
Collapse
|
9
|
Derossi A, Di Palma E, Moses JA, Santhoshkumar P, Caporizzi R, Severini C. Avenues for non-conventional robotics technology applications in the food industry. Food Res Int 2023; 173:113265. [PMID: 37803578 DOI: 10.1016/j.foodres.2023.113265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Robots in manufacturing alleviate hazardous environmental conditions, reduce the physical/mental stress of the workers, maintain high precision for repetitive movements, reduce errors, speed up production, and minimize production costs. Although robots have pervaded many industrial sectors and domestic environments, the experiments in the food sectors are limited to pick-and-place operations and meat processing while we are assisting new attention in gastronomy. Given the great performances of the robots, there would be many other intriguing applications to explore which could usher the transition to precision food manufacturing. This review wants open thoughts and opinions on the use of robots in different food operations. First, we reviewed the recent advances in common applications - e.g. novel sensors, end-effectors, and robotic cutting. Then, we analyzed the use of robots in other operations such as cleaning, mixing/kneading, dough manipulation, precision dosing/cooking, and additive manufacturing. Finally, the most recent improvements of robotics in gastronomy with their use in restaurants/bars and domestic environments, are examined. The comprehensive analyses and the critical discussion highlighted the needs of further scientific understanding and exploitation activities aimed to fill the gap between the laboratory-scale results and the validation in the relevant environment.
Collapse
Affiliation(s)
- A Derossi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Italy
| | - E Di Palma
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Italy
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, MoFPI, Govt. of India, Thanjavur, Tamil Nadu 613005, India
| | - P Santhoshkumar
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, MoFPI, Govt. of India, Thanjavur, Tamil Nadu 613005, India
| | - R Caporizzi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Italy.
| | - C Severini
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Italy
| |
Collapse
|
10
|
Pandya VS, Morsy MS, Hassan AAHAA, Alshawkani HA, Sindi AS, Mattoo KA, Mehta V, Mathur A, Meto A. Ultraviolet disinfection (UV-D) robots: bridging the gaps in dentistry. FRONTIERS IN ORAL HEALTH 2023; 4:1270959. [PMID: 38024151 PMCID: PMC10646406 DOI: 10.3389/froh.2023.1270959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Maintaining a microbe-free environment in healthcare facilities has become increasingly crucial for minimizing virus transmission, especially in the wake of recent epidemics like COVID-19. To meet the urgent need for ongoing sterilization, autonomous ultraviolet disinfection (UV-D) robots have emerged as vital tools. These robots are gaining popularity due to their automated nature, cost advantages, and ability to instantly disinfect rooms and workspaces without relying on human labor. Integrating disinfection robots into medical facilities reduces infection risk, lowers conventional cleaning costs, and instills greater confidence in patient safety. However, UV-D robots should complement rather than replace routine manual cleaning. To optimize the functionality of UV-D robots in medical settings, additional hospital and device design modifications are necessary to address visibility challenges. Achieving seamless integration requires more technical advancements and clinical investigations across various institutions. This mini-review presents an overview of advanced applications that demand disinfection, highlighting their limitations and challenges. Despite their potential, little comprehensive research has been conducted on the sterilizing impact of disinfection robots in the dental industry. By serving as a starting point for future research, this review aims to bridge the gaps in knowledge and identify unresolved issues. Our objective is to provide an extensive guide to UV-D robots, encompassing design requirements, technological breakthroughs, and in-depth use in healthcare and dentistry facilities. Understanding the capabilities and limitations of UV-D robots will aid in harnessing their potential to revolutionize infection control practices in the medical and dental fields.
Collapse
Affiliation(s)
- Visha Shailesh Pandya
- Department of Public Health Dentistry, Vaidik Dental College & Research Centre, Dadra and Nagar Haveli and Daman and Diu, India
| | - Mohamed S.M. Morsy
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | - Hamed A. Alshawkani
- Department of Restorative Dental Science, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Abdulelah Sameer Sindi
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Khurshid A. Mattoo
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Vini Mehta
- Department of Dental Research Cell, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Ankita Mathur
- Department of Dental Research Cell, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Aida Meto
- Department of Dental Research Cell, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India
- Department of Dentistry, Faculty of Dental Sciences, University of Aldent, Tirana, Albania
- Clinical Microbiology, School of Dentistry, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
11
|
Knobling B, Ulatowski A, Franke G, Belmar Campos C, Büttner H, Klupp EM, Maurer PM, Brill FHH, Knobloch JK. Superiority of manual disinfection using pre-soaked wipes over automatic UV-C radiation without prior cleaning. J Hosp Infect 2023; 140:72-78. [PMID: 37543180 DOI: 10.1016/j.jhin.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/23/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND The efficacy of ultraviolet C (UV-C) radiation against a broad spectrum of micro-organisms has been demonstrated in several studies, but differences in the specific doses and the extent of microbial reduction were found. Furthermore, the conditions of laboratory tests differ greatly from reality, such that efficacy achieved in tests may not necessarily be assumed in reality. Consequently, it is important to investigate the effectiveness of UV-C in representative field trials. The aim was therefore to develop and establish a field test to evaluate automatic UV-C in comparison to manual disinfection. METHODS Before and after disinfection, samples were repeatedly collected from naturally highly contaminated surfaces using the swab technique to obtain representative data sets for disinfected and non-disinfected surfaces. Subsequently, the log reduction values (LRV) and the disinfection success were evaluated for UV-C radiation and full compliant manual disinfection using alcohol-based wipes. RESULTS Surfaces that are naturally contaminated with bacteria on a regular and nearly uniform basis have been identified as particularly suitable for field testing. Mean contamination was reduced from 23.3 to 1.98 cfu/cm2 (LRV 0.9) and 29.7 to 0.26 cfu/cm2 (LRV 1.2) for UV-C and manual disinfection, respectively. UV-C disinfection achieved 75.5% successful disinfected surfaces, whereas manual disinfection showed 98.1%. CONCLUSIONS Full compliant manual disinfection showed slightly higher LRVs and disinfection success than automatic UV-C disinfection. Successful, operator-independent UV-C disinfection still has the potential to improve disinfection performance in addition to manual disinfection.
Collapse
Affiliation(s)
- B Knobling
- Institute for Medical Microbiology, Virology and Hygiene, Department Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Ulatowski
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Hamburg, Germany
| | - G Franke
- Institute for Medical Microbiology, Virology and Hygiene, Department Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C Belmar Campos
- Institute for Medical Microbiology, Virology and Hygiene, Department Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - H Büttner
- Institute for Medical Microbiology, Virology and Hygiene, Department Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E M Klupp
- Institute for Medical Microbiology, Virology and Hygiene, Department Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P M Maurer
- Institute for Medical Microbiology, Virology and Hygiene, Department Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - F H H Brill
- Dr. Brill + Partner GmbH Institute for Hygiene and Microbiology, Hamburg, Germany
| | - J K Knobloch
- Institute for Medical Microbiology, Virology and Hygiene, Department Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
12
|
Chen H, Cheng Y, Moraru CI. Blue 405 nm LED light effectively inactivates bacterial pathogens on substrates and packaging materials used in food processing. Sci Rep 2023; 13:15472. [PMID: 37726297 PMCID: PMC10509141 DOI: 10.1038/s41598-023-42347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
This study investigates the antimicrobial effectiveness of 405 nm light emitting diodes (LEDs) against pathogenic Escherichia coli O157:H7, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium, and Staphylococcus aureus, in thin liquid films (TLF) and on solid surfaces. Stainless steel (SS), high density polyethylene (HDPE), low density polyethylene (LDPE), and borosilicate glass were used as materials typically encountered in food processing, food service, and clinical environments. Anodic aluminum oxide (AAO) coupons with nanoscale topography were used, to evaluate the effect of topography on inactivation. The impact of surface roughness, hydrophobicity, and reflectivity on inactivation was assessed. A 48 h exposure to 405 nm led to reductions ranging from 1.3 (E. coli) to 5.7 (S. aureus) log CFU in TLF and 3.1 to 6.3 log CFU on different solid contact surfaces and packaging materials. All inactivation curves were nonlinear and followed Weibull kinetics, with better inactivation predictions on surfaces (0.89 ≤ R2 ≤ 1.0) compared to TLF (0.76 ≤ R2 ≤ 0.99). The fastest inactivation rate was observed on small nanopore AAO coupons inoculated with L. monocytogenes and S. aureus, indicating inactivation enhancing potential of these surfaces. These results demonstrate significant promise of 405 nm LEDs for antimicrobial applications in food processing and handling and the healthcare industry.
Collapse
Affiliation(s)
- Hanyu Chen
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Yifan Cheng
- Department of Food Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Carmen I Moraru
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
13
|
Pereira AR, Braga DFO, Vassal M, Gomes IB, Simões M. Ultraviolet C irradiation: A promising approach for the disinfection of public spaces? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163007. [PMID: 36965719 DOI: 10.1016/j.scitotenv.2023.163007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Ultraviolet irradiation C (UVC) has emerged as an effective strategy for microbial control in indoor public spaces. UVC is commonly applied for air, surface, and water disinfection. Unlike common 254 nm UVC, far-UVC at 222 nm is considered non-harmful to human health, being safe for occupied spaces, and still effective for disinfection purposes. Therefore, and allied to the urgency to mitigate the current pandemic of SARS-CoV-2, an increase in UVC-based technology devices appeared in the market with levels of pathogens reduction higher than 99.9 %. This environmentally friendly technology has the potential to overcome many of the limitations of traditional chemical-based disinfection approaches. The novel UVC-based devices were thought to be used in public indoor spaces such as hospitals, schools, and public transport to minimize the risk of pathogens contamination and propagation, saving costs by reducing manual cleaning and equipment maintenance provided by manpower. However, a lack of information about UVC-based parameters and protocols for disinfection, and controversies regarding health and environmental risks still exist. In this review, fundamentals on UVC disinfection are presented. Furthermore, a deep analysis of UVC-based technologies available in the market for the disinfection of public spaces is addressed, as well as their advantages and limitations. This comprehensive analysis provides valuable inputs and strategies for the development of effective, reliable, and safe UVC disinfection systems.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Daniel F O Braga
- SpinnerDynamics, Lda., Rua da Junta de Freguesia 194, Escariz, 4540-322 Arouca, Portugal
| | - Mariana Vassal
- SpinnerDynamics, Lda., Rua da Junta de Freguesia 194, Escariz, 4540-322 Arouca, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
14
|
Deal AM, Vaida V. Oxygen Effect on the Ultraviolet-C Photochemistry of Lactic Acid. J Phys Chem A 2023; 127:2936-2945. [PMID: 36962071 DOI: 10.1021/acs.jpca.3c00992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Lactic acid, a small α-hydroxyacid, is ubiquitous in both indoor and outdoor environments. Recently, the photochemistry of lactic acid has garnered interest among the abiotic organic chemistry community as it would have been present in abiotic settings and photoactive with the high-energy solar radiation that would have been available in the low oxygen early Earth environment. Additionally, we propose that the photochemistry of lactic acid is relevant to modern Earth during indoor ultraviolet-C (UVC) sterilization procedures as lactic acid is emitted by humans and is thus prevalent in indoor environments where UVC sterilization is increasingly being used. Here, we study the oxygen effect on the gas phase photolysis of lactic acid using Fourier-transform infrared (FTIR) spectroscopy and isotopically labeled oxygen (18O2). We find that the major products of gas phase lactic acid photolysis are CO2, CO, acetaldehyde, and acetic acid. Furthermore, these products are the same with or without added oxygen, but the partial pressures of produced CO2, CO, and acetaldehyde increase with the amount of added oxygen. Notably, the added oxygen is primarily incorporated into produced CO2 and CO, while little or none is incorporated into acetaldehyde. We combine the results presented here with those in the literature to propose a mechanism for the gas phase photolysis of lactic acid and the role of oxygen in this mechanism. Finally, we compare the output of a krypton-chloride excimer lamp (λ = 222 nm), one of the lamps proposed for UVC sterilization procedures, to the absorption of lactic acid. We show that lactic acid would be photoactive during UVC sterilization procedures, and we use the gas phase results presented here and aqueous lactic acid photolysis results previously published to assess potential byproducts from lactic acid reactions during UVC sterilization procedures.
Collapse
Affiliation(s)
- Alexandra M Deal
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Veronica Vaida
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|