1
|
Wisdom AJ, Yeap BY, Michalski JM, Horick NK, Zietman AL, Christodouleas JP, Kamran SC, Parikh RR, Vapiwala N, Mihalcik S, Miyamoto DT, Zeng J, Gay HA, Pisansky TM, Mishra MV, Spratt DE, Mendenhall NP, Soffen EM, Bekelman JE, Efstathiou JA. Setting the Stage: Feasibility and Baseline Characteristics in the PARTIQoL Trial Comparing Proton Therapy Versus Intensity Modulated Radiation Therapy for Localized Prostate Cancer. Int J Radiat Oncol Biol Phys 2025; 121:741-751. [PMID: 39357788 DOI: 10.1016/j.ijrobp.2024.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE Men with localized prostate cancer may receive either photon-based intensity modulated radiation therapy (IMRT) or proton beam therapy (PBT). The PARTIQoL trial (NCT01617161) demonstrates the feasibility of performing a large, multicenter phase 3 randomized trial comparing IMRT with PBT for localized prostate cancer. Here, we report baseline features of patients enrolled on this trial and present strategies to improve feasibility of other similar trials. METHODS AND MATERIALS Patients with low- or intermediate-risk prostate cancer were randomly assigned to either PBT or IMRT with stratification by institution, age, use of rectal spacer, and fractionation schedule (conventional fractionation: 79.2 Gy in 44 fractions vs moderate hypofractionation: 70.0 Gy in 28 fractions). The primary endpoint is a change from baseline bowel health using the Expanded Prostate Index Composite score 24 months after radiation therapy. Secondary objectives include treatment-related differences in urinary and erectile functions, adverse events, and efficacy endpoints. RESULTS Between July 2012 and November 2021, 450 patients were successfully accrued. Patients were randomly assigned to either PBT (N = 226) or to IMRT (N = 224); 13 were ineligible or withdrew before treatment. The median age of 437 analyzed patients was 68 years (range, 46-89 years). A total of 41% of patients had low-risk and 59% had intermediate-risk disease. In total, 49% of patients were treated with conventional fractionation and 51% with moderately hypofractionation. 48% of patients used a rectal spacer. For patients receiving PBT, pencil beam scanning was used in 48%. PBT and IMRT arms were balanced for baseline variables. CONCLUSIONS Despite significant challenges, the PARTIQoL trial demonstrated that, with targeted recruitment approaches, multicenter collaboration, payer engagement, and protocol updates to incorporate contemporary techniques, it is feasible to perform a large phase 3 randomized clinical trial to assess whether PBT improves outcomes. We will separately report primary results and continue to monitor participants for longer follow-up and secondary endpoints.
Collapse
Affiliation(s)
- Amy J Wisdom
- Department Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Beow Y Yeap
- Department Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeff M Michalski
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Nora K Horick
- Department Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anthony L Zietman
- Department Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - John P Christodouleas
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sophia C Kamran
- Department Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rahul R Parikh
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Neha Vapiwala
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen Mihalcik
- Department of Radiation Oncology, Northwestern Medicine, Feinberg School of Medicine, Chicago, Illinois
| | - David T Miyamoto
- Department Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jing Zeng
- Department of Radiation Oncology, University of Washington - Fred Hutchinson Cancer Center, Seattle, Washington
| | - Hiram A Gay
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Mark V Mishra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Daniel E Spratt
- University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Nancy P Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida
| | - Edward M Soffen
- Princeton Radiation Oncology, Astera Cancer Care, Jamesburg, New Jersey
| | - Justin E Bekelman
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason A Efstathiou
- Department Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
2
|
Shen J, Taylor PA, Vargas CE, Kang M, Saini J, Zhou J, Wang P, Liu W, Simone CB, Xiao Y, Lin L. The Status and Challenges for Prostate Stereotactic Body Radiation Therapy Treatments in United States Proton Therapy Centers: An NRG Oncology Practice Survey. Int J Part Ther 2024; 11:100020. [PMID: 38757080 PMCID: PMC11095093 DOI: 10.1016/j.ijpt.2024.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose To report the current practice pattern of the proton stereotactic body radiation therapy (SBRT) for prostate treatments. Materials and Methods A survey was designed to inquire about the practice of proton SBRT treatment for prostate cancer. The survey was distributed to all 30 proton therapy centers in the United States that participate in the National Clinical Trial Network in February, 2023. The survey focused on usage, patient selection criteria, prescriptions, target contours, dose constraints, treatment plan optimization and evaluation methods, patient-specific QA, and image-guided radiation therapy (IGRT) methods. Results We received responses from 25 centers (83% participation). Only 8 respondent proton centers (32%) reported performing SBRT of the prostate. The remaining 17 centers cited 3 primary reasons for not offering this treatment: no clinical need, lack of volumetric imaging, and/or lack of clinical evidence. Only 1 center cited the reduction in overall reimbursement as a concern for not offering prostate SBRT. Several common practices among the 8 centers offering SBRT for the prostate were noted, such as using Hydrogel spacers, fiducial markers, and magnetic resonance imaging (MRI) for target delineation. Most proton centers (87.5%) utilized pencil beam scanning (PBS) delivery and completed Imaging and Radiation Oncology Core (IROC) phantom credentialing. Treatment planning typically used parallel opposed lateral beams, and consistent parameters for setup and range uncertainties were used for plan optimization and robustness evaluation. Measurements-based patient-specific QA, beam delivery every other day, fiducial contours for IGRT, and total doses of 35 to 40 GyRBE were consistent across all centers. However, there was no consensus on the risk levels for patient selection. Conclusion Prostate SBRT is used in about 1/3 of proton centers in the US. There was a significant consistency in practices among proton centers treating with proton SBRT. It is possible that the adoption of proton SBRT may become more common if proton SBRT is more commonly offered in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Zhou
- Emory University, Atlanta, Georgia, USA
| | | | - Wei Liu
- Mayo Clinic Arizona, Phoenix, Arizona, USA
| | | | - Ying Xiao
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
3
|
Lukez A, Handorf E, Mendenhall NP, Henderson RH, Stish BJ, Davis BJ, Hallman M, Horwitz EM, Vapiwala N, Wong JK. A pooled patient-reported outcomes analysis of moderately hypofractionated proton beam therapy and photon-based intensity modulated radiation therapy for low- or intermediate-risk prostate cancer. Prostate 2024; 84:395-402. [PMID: 38108113 PMCID: PMC11907720 DOI: 10.1002/pros.24660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND We sought to characterize and compare late patient-reported outcomes (PROs) after moderately hypofractionated intensity modulated radiation therapy (IMRT) and proton beam therapy (PBT) for localized prostate cancer (PC). METHODS This multi-institutional analysis included low- or intermediate-risk group PC patients treated with moderately hypofractionated radiation to an intact prostate stratified by treatment modality: IMRT or PBT. The primary outcomes were prospectively collected patient-reported late gastrointestinal (GI) and genitourinary (GU) toxicity assessed by International Prostate Symptom Score (IPSS) and Expanded PC Index Composite (EPIC). Multivariable regression analysis (MVA) controlling for age, race, and risk group tested the effect of time, treatment, and their interaction. RESULTS 287 IMRT and 485 PBT patients were included. Intermediate risk group (81.2 vs. 68.2%; p < 0.001) and median age at diagnosis (70 vs. 67 years; p < 0.001) were higher in the IMRT group. On MVA, there was no significant difference between modalities. PBT IPSS did not differ from IMRT IPSS at 12 months (odds ratio [OR], 1.19; p = 0.08) or 24 months (OR, 0.99; p = 0.94). PBT EPIC overall GI function at 12 months (OR, 3.68; p = 0.085) and 24 months (OR 2.78; p = 0.26) did not differ from IMRT EPIC overall GI function. At 24 months, urinary frequency was no different between PBT and IMRT groups (OR 0.35; p = 0.096). CONCLUSIONS This multi-institutional analysis of low- or intermediate-risk PC treated with moderately hypofractionated PBT and IMRT demonstrated low rates of late patient-reported GI and GU toxicities. After covariate adjustment, late GI and GU PROs were not significantly different between PBT or IMRT cohorts.
Collapse
Affiliation(s)
- Alexander Lukez
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Elizabeth Handorf
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Nancy P Mendenhall
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - Randal H Henderson
- Department of Radiation Oncology, UF Health Proton Therapy Institute, Jacksonville, Florida, USA
| | - Bradley J Stish
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Brian J Davis
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark Hallman
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Eric M Horwitz
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Neha Vapiwala
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Karen Wong
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Laughlin BS, Voss MM, Toesca DA, Daniels T, Golafshar MA, Keole SR, Wong WW, Rwigema JC, Davis B, Schild SE, Stish BJ, Choo R, Lester S, DeWees TA, Vargas CE. Preliminary Analysis of a Phase II Trial of Stereotactic Body Radiation Therapy for Prostate Cancer With High-Risk Features After Radical Prostatectomy. Adv Radiat Oncol 2022; 8:101143. [PMID: 36845611 PMCID: PMC9943785 DOI: 10.1016/j.adro.2022.101143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose There are limited data regarding using stereotactic body radiation therapy (SBRT) in the postprostatectomy setting. Here, we present a preliminary analysis of a prospective phase II trial that aimed to evaluate the safety and efficacy of postprostatectomy SBRT for adjuvant or early salvage therapy. Materials and Methods Between May 2018 and May 2020, 41 patients fulfilled inclusion criteria and were stratified into 3 groups: group I (adjuvant), prostate-specific antigen (PSA) < 0.2 ng/mL with high-risk features including positive surgical margins, seminal vesicle invasion, or extracapsular extension; group II (salvage), with PSA ≥ 0.2 ng/mL but < 2 ng/mL; or group III (oligometastatic), with PSA ≥ 0.2 ng/mL but < 2 ng/mL and up to 3 sites of nodal or bone metastases. Androgen deprivation therapy was not offered to group I. Androgen deprivation therapy was offered for 6 months for group II and 18 months for group III patients. SBRT dose to the prostate bed was 30 to 32 Gy in 5 fractions. Baseline-adjusted physician reported toxicities (Common Terminology Criteria for Adverse Events), patient reported quality-of-life (Expanded Prostate Index Composite, Patient-Reported Outcome Measurement Information System), and American Urologic Association scores were evaluated for all patients. Results The median follow-up was 23 months (range, 10-37). SBRT was adjuvant in 8 (20%) patients, salvage in 28 (68%), and salvage with the presence of oligometastases in 5 (12%) patients. Urinary, bowel, and sexual quality of life domains remained high after SBRT. Patients tolerated SBRT with no grade 3 or higher (3+) gastrointestinal or genitourinary toxicities. The baseline adjusted acute and late toxicity grade 2 genitourinary (urinary incontinence) rate was 2.4% (1/41) and 12.2% (5/41). At 2 years, clinical disease control was 95%, and biochemical control was 73%. Among the 2 clinical failures, 1 was a regional node and the other a bone metastasis. Oligometastatic sites were salvaged successfully with SBRT. There were no in-target failures. Conclusions Postprostatectomy SBRT was very well tolerated in this prospective cohort, with no significant effect on quality of life metrics postirradiation, while providing excellent clinical disease control.
Collapse
Affiliation(s)
| | - Molly M. Voss
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, Arizona
| | | | - Thomas Daniels
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona,Department of Radiation Oncology, NYU Langone Health, Brooklyn, New York
| | | | - Sameer R. Keole
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - William W. Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | | | - Brian Davis
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Brad J. Stish
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Richard Choo
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Scott Lester
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Todd A. DeWees
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, Arizona
| | - Carlos E. Vargas
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona,Corresponding author: Carlos E. Vargas, MD
| |
Collapse
|
5
|
The Role of Hypofractionation in Proton Therapy. Cancers (Basel) 2022; 14:cancers14092271. [PMID: 35565400 PMCID: PMC9104796 DOI: 10.3390/cancers14092271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 12/07/2022] Open
Abstract
Hypofractionated radiotherapy is an attractive approach for minimizing patient burden and treatment cost. Technological advancements in external beam radiotherapy (EBRT) delivery and image guidance have resulted in improved targeting and conformality of the absorbed dose to the disease and a reduction in dose to healthy tissue. These advances in EBRT have led to an increasing adoption and interest in hypofractionation. Furthermore, for many treatment sites, proton beam therapy (PBT) provides an improved absorbed dose distribution compared to X-ray (photon) EBRT. In the past 10 years there has been a notable increase in reported clinical data involving hypofractionation with PBT, reflecting the interest in this treatment approach. This review will discuss the reported clinical data and radiobiology of hypofractionated PBT. Over 50 published manuscripts reporting clinical results involving hypofractionation and PBT were included in this review, ~90% of which were published since 2010. The most common treatment regions reported were prostate, lung and liver, making over 70% of the reported results. Many of the reported clinical data indicate that hypofractionated PBT can be well tolerated, however future clinical trials are still needed to determine the optimal fractionation regime.
Collapse
|
6
|
Borowicz DM, Shipulin KN, Mytsin GV, Skrobała A, Milecki P, Gayevsky VN, Vondráček V, Malicki J. Ultra-Hypofractionated Proton Therapy in Localized Prostate Cancer: Passive Scattering versus Intensity-Modulated Proton Therapy. J Pers Med 2021; 11:1311. [PMID: 34945783 PMCID: PMC8709262 DOI: 10.3390/jpm11121311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Few studies have directly compared passive scattering (PS) to intensity-modulated proton therapy (IMPT) in the delivery of ultra-hypofractionated proton beams to the localized prostate cancer (PCa). In this preliminary study involving five patients previously treated with CyberKnife, treatment plans were created for PS and IMPT (36.25 CGE in five fractions with two opposing fields) to compare the dosimetric parameters to the planning target volume (PTV) and organs-at-risk (OAR: rectum, bladder, femoral heads). Both plans met the acceptance criteria. Significant differences were observed in the minimum and maximum doses to the PTV. The mean dose to the PTV was lower for PS (35.62 ± 0.26 vs. 37.18 ± 0.14; p = 0.002). Target coverage (D98%) was better for IMPT (96.79% vs. 99.10%; p = 0.004). IMPT resulted in significantly lower mean doses to the rectum (16.75 CGE vs. 6.88 CGE; p = 0.004) and bladder (17.69 CGE vs. 5.98 CGE p = 0.002). High dose to the rectum (V36.25 CGE) were lower with PS, but not significantly opposite to high dose to the bladder. No significant differences were observed in mean conformity index values, with a non-significant trend towards higher mean homogeneity index values for PS. Non-significant differences in the gamma index for both fields were observed. These findings suggest that both PS and IMPT ultra-hypofractionated proton therapy for PCa are highly precise, offering good target coverage and sparing of normal tissues and OARs.
Collapse
Affiliation(s)
- Dorota Maria Borowicz
- Greater Poland Cancer Centre, Department of Medical Physics, 61-688 Poznan, Poland; (A.S.); (P.M.); (J.M.)
| | - Konstantin N. Shipulin
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980 Dubna, Russia; (K.N.S.); (G.V.M.); (V.N.G.)
| | - Gennady V. Mytsin
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980 Dubna, Russia; (K.N.S.); (G.V.M.); (V.N.G.)
| | - Agnieszka Skrobała
- Greater Poland Cancer Centre, Department of Medical Physics, 61-688 Poznan, Poland; (A.S.); (P.M.); (J.M.)
- Electroradiology Department, Poznan University of Medical Sciences, 61-688 Poznan, Poland
| | - Piotr Milecki
- Greater Poland Cancer Centre, Department of Medical Physics, 61-688 Poznan, Poland; (A.S.); (P.M.); (J.M.)
- Electroradiology Department, Poznan University of Medical Sciences, 61-688 Poznan, Poland
- Greater Poland Cancer Centre, Department of Radiotherapy I-st, 61-886 Poznan, Poland
| | - Victor N. Gayevsky
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980 Dubna, Russia; (K.N.S.); (G.V.M.); (V.N.G.)
| | | | - Julian Malicki
- Greater Poland Cancer Centre, Department of Medical Physics, 61-688 Poznan, Poland; (A.S.); (P.M.); (J.M.)
- Electroradiology Department, Poznan University of Medical Sciences, 61-688 Poznan, Poland
| |
Collapse
|
7
|
Li M, Li X, Yao L, Han X, Yan W, Liu Y, Fu Y, Wang Y, Huang M, Zhang Q, Wang X, Yang K. Clinical Efficacy and Safety of Proton and Carbon Ion Radiotherapy for Prostate Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:709530. [PMID: 34712607 PMCID: PMC8547329 DOI: 10.3389/fonc.2021.709530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/15/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Carbon ion radiotherapy (CIRT) and proton beam therapy (PBT) are promising methods for prostate cancer, however, the consensus of an increasing number of studies has not been reached. We aimed to provide systematic evidence for evaluating the efficacy and safety of CIRT and PBT for prostate cancer by comparing photon radiotherapy. MATERIALS AND METHODS We searched for studies focusing on CIRT and PBT for prostate cancer in four online databases until July 2021. Two independent reviewers assessed the quality of included studies and used the GRADE approach to rate the quality of evidence. R 4.0.2 software was used to conduct the meta-analysis. A meta-regression test was performed based on the study design and tumor stage of each study. RESULTS A total of 33 studies including 13 CIRT- and 20 PBT-related publications, involving 54,101, participants were included. The quality of the included studies was found to be either low or moderate quality. Random model single-arm meta-analysis showed that both the CIRT and PBT have favorable efficacy and safety, with similar 5-year overall survival (OS) (94 vs 92%), the incidence of grade 2 or greater acute genitourinary (AGU) toxicity (5 vs 13%), late genitourinary (LGU) toxicity (4 vs 5%), acute gastrointestinal (AGI) toxicity (1 vs 1%), and late gastrointestinal (LGI) toxicity (2 vs 4%). However, compared with CIRT and PBT, photon radiotherapy was associated with lower 5-year OS (72-73%) and a higher incidence of grade 2 or greater AGU (28-29%), LGU (13-14%), AGI (14-19%), and LGI toxicity (8-10%). The meta-analysis showed the 3-, 4-, and 5-year local control rate (LCR) of CIRT for prostate cancer was 98, 97, and 99%; the 3-, 4-, 5-, and 8-year biochemical relapse-free rate (BRF) was 92, 91, 89, and 79%. GRADE assessment results indicated that the certainty of the evidence was very low. Meta-regression results did not show a significant relationship based on the variables studied (P<0.05). CONCLUSIONS Currently available evidence demonstrated that the efficacy and safety of CIRT and PBT for prostate cancer were similar, and they may significantly improve the OS, LCR, and reduce the incidence of GU and GI toxicity compared with photon radiotherapy. However, the quantity and quality of the available evidence are insufficient. More high-quality controlled studies are needed in the future.
Collapse
Affiliation(s)
- Meixuan Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiuxia Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China
| | - Liang Yao
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Xue Han
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wenlong Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yujun Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yiwen Fu
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yakun Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Min Huang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Bulman GF, Bhangoo RS, DeWees TA, Petersen MM, Thorpe CS, Wong WW, Rwigema JCM, Daniels TB, Keole SR, Schild SE, Vargas CE. Dose-volume histogram parameters and patient-reported EPIC-Bowel domain in prostate cancer proton therapy. Radiat Oncol J 2021; 39:122-128. [PMID: 34619829 PMCID: PMC8497859 DOI: 10.3857/roj.2021.00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose To analyze rectal dose and changes in quality of life (QOL) measured with the Expanded Prostate and Cancer Index Composite (EPIC) bowel domain in patients being treated for prostate cancer with curative-intent proton beam therapy (PBT) within a large single-institution prospective registry. Materials and Methods Data was collected from 243 patients with localized prostate cancer treated with PBT from 2016 to 2018. The EPIC survey was administered at baseline, end-of-treatment, 3, 6, and 12 months, then annually. Dose-volume histogram (DVH) parameters for the rectum were computed, and rectal dose was analyzed using BED (α/β = 3), EQD2Gy, and total dose. Repeated measures mixed models were implemented to determine the effect of patient, clinical, and treatment factors (including DVH) on patient-reported bowel symptom burden (EPIC-Bowel). Results Treatment overall resulted in changes in EPIC-Bowel scores (baseline score = 93.7), most notably at end-of-treatment (90.6) and 12 months (89.7). However, they returned to baseline at 36 months (92.9). On multivariate modeling, rectal BED D25 (Gy) ≥23% was significantly associated with decline in QOL scores measuring bother (p < 0.01; 4.06 points different). Conclusion Rectal doses, specifically BED D25 (Gy) ≥23%, are significantly associated with decline in bowel bother-related QOL in patients undergoing definitive radiotherapy for localized prostate cancer. This study demonstrates BED as an independent predictor of bowel QOL across dose fractionations of PBT.
Collapse
Affiliation(s)
| | - Ronik S Bhangoo
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Todd A DeWees
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA.,Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Molly M Petersen
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | | | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | | | - Sameer R Keole
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Carlos E Vargas
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
9
|
Vapiwala N, Wong JK, Handorf E, Paly J, Grewal A, Tendulkar R, Godfrey D, Carpenter D, Mendenhall NP, Henderson RH, Stish BJ, Vargas C, Salama JK, Davis BJ, Horwitz EM. A Pooled Toxicity Analysis of Moderately Hypofractionated Proton Beam Therapy and Intensity Modulated Radiation Therapy in Early-Stage Prostate Cancer Patients. Int J Radiat Oncol Biol Phys 2021; 110:1082-1089. [PMID: 33539968 PMCID: PMC9610030 DOI: 10.1016/j.ijrobp.2021.01.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/13/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Data comparing moderately hypofractionated intensity modulated radiation therapy (IMRT) and proton beam therapy (PBT) are lacking. We aim to compare late toxicity profiles of patients with early-stage prostate cancer treated with moderately hypofractionated PBT and IMRT. METHODS AND MATERIALS This multi-institutional analysis included patients with low- or intermediate-risk biopsy-proven prostate adenocarcinoma from 7 tertiary referral centers treated from 1998 to 2018. All patients were treated with moderately hypofractionated radiation, defined as 250 to 300 cGy per daily fraction given for 4 to 6 weeks, and stratified by use of IMRT or PBT. Primary outcomes were late genitourinary (GU) and gastrointestinal (GI) toxicity. Adjusted toxicity rates were calculated using inverse probability of treatment weighting, accounting for race, National Comprehensive Cancer Network risk group, age, pretreatment International Prostate Symptom Score (GU only), and anticoagulant use (GI only). RESULTS A total of 1850 patients were included: 1282 IMRT (median follow-up 80.0 months) and 568 PBT (median follow-up 43.9 months). Overall toxicity rates were low, with the majority of patients experiencing no late GU (56.6%, n = 1048) or late GI (74.4%, n = 1377) toxicity. No difference was seen in the rates of late toxicity between the groups, with late grade 3+ GU toxicity of 2.0% versus 3.9% (odds ratio [OR] 0.47; 95% confidence interval 0.17-1.28) and late grade 2+ GI toxicity of 14.6% versus 4.7% (OR 2.69; confidence interval 0.80-9.05) for the PBT and IMRT cohorts, respectively. On multivariable analysis, no factors were significantly predictive of GU toxicity, and only anticoagulant use was significantly predictive of GI toxicity (OR 1.90; P = .008). CONCLUSIONS In this large, multi-institutional analysis of 1850 patients with early-stage prostate cancer, treatment with moderately hypofractionated IMRT and PBT resulted in low rates of toxicity. No difference was seen in late GI and GU toxicity between the modalities during long-term follow-up. Both treatments are safe and well tolerated.
Collapse
Affiliation(s)
- Neha Vapiwala
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J Karen Wong
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Elizabeth Handorf
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jonathan Paly
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Amardeep Grewal
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rahul Tendulkar
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Devon Godfrey
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - David Carpenter
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Nancy P Mendenhall
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Randal H Henderson
- Department of Radiation Oncology, UF Health Proton Therapy Institute, Jacksonville, Florida
| | - Bradley J Stish
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Carlos Vargas
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Joseph K Salama
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Brian J Davis
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Eric M Horwitz
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
10
|
Hattori Y, Iwata H, Nakajima K, Nomura K, Hayashi K, Toshito T, Hashimoto S, Umemoto Y, Mizoe JE, Ogino H, Shibamoto Y. Changes in sexual function and serum testosterone levels in patients with prostate cancer after image-guided proton therapy. JOURNAL OF RADIATION RESEARCH 2021; 62:517-524. [PMID: 33675355 PMCID: PMC8127670 DOI: 10.1093/jrr/rrab002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/29/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Since sexual function and testosterone levels after image-guided proton therapy (IGPT) have not yet been examined in detail, we prospectively evaluated changes before and after IGPT. Among patients treated with IGPT with or without combined androgen blockade (CAB) therapy between February 2013 and September 2014, patients who agreed to participate in the study and were followed up for >3 years after IGPT were evaluated. Serum testosterone levels were regularly measured together with prostate-specific antigen (PSA) levels before and after IGPT. The Erection Hardness Score (EHS) and the sexual domain summary, function subscale and bother subscale of the sexual domain in the Expanded Prostate Cancer Index Composite (EPIC) were assessed. There were 38 low-risk, 46 intermediate-risk and 43 high- or very-high-risk patients (NCCN classification). Although serum testosterone levels in low-risk patients did not decrease after IGPT, reductions were observed in the average EHS and the sexual domain summary score of the EPIC. In intermediate-, high- and very-high-risk patients, testosterone and PSA levels both increased following the termination of CAB after IGPT, and the average EHS increased. The sexual domain summary score gradually increased, but not above minimally important differences. In intermediate-risk patients, the function subscale increased from 4.4 to 14.8 (P < 0.05) 12 months after IGPT and reached a plateau after 60 months. The results of the present study would suggest the potential of IGPT, and further prospective studies to directly compare IGPT with other modalities are warranted.
Collapse
Affiliation(s)
- Yukiko Hattori
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya 462-8508, Japan
| | - Hiromitsu Iwata
- Corresponding author. Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya 462-8508, Japan. Tel: +81 52 991 8577; Fax: +81 52 991 8599; E-mail:
| | - Koichiro Nakajima
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya 462-8508, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kento Nomura
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya 462-8508, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kensuke Hayashi
- Department of Proton Therapy Technology, Nagoya Proton Therapy Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya 462-8508, Japan
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya 462-8508, Japan
| | - Shingo Hashimoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yukihiro Umemoto
- Department of Nephro-Urology, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya 462-8508, Japan
| | - Jun-etsu Mizoe
- Sapporo High Functioning Radiotherapy Center, Hokkaido Ohno Memorial Hospital, 2-1-16-1 Miyanosawa, Nishi-ku, Sapporo 063-0052, Japan
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya 462-8508, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
11
|
Ricco A, Barbera G, Lanciano R, Feng J, Hanlon A, Lozano A, Good M, Arrigo S, Lamond J, Yang J. Favorable Biochemical Freedom From Recurrence With Stereotactic Body Radiation Therapy for Intermediate and High-Risk Prostate Cancer: A Single Institutional Experience With Long-Term Follow-Up. Front Oncol 2020; 10:1505. [PMID: 33102201 PMCID: PMC7545336 DOI: 10.3389/fonc.2020.01505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose/Objective(s): The current study reports long-term overall survival (OS) and biochemical freedom from recurrence (BFFR) after stereotactic body radiation therapy (SBRT) for men with intermediate and high-risk prostate cancer in a single community hospital setting with early adoption. Materials/Methods: Ninety-seven consecutive men with intermediate and high-risk prostate cancer treated with SBRT between 2007 and 2015 were retrospectively studied. Categorical variables for analysis included National Comprehensive Cancer Network risk group, race, Gleason grade group, T stage, use of androgen deprivation therapy, and planning target volume dose. Continuous variables for analysis included pretreatment prostate-specific antigen (PSA), percent cores positive, age at diagnosis, PSA nadir, prostate volume, percent prostate that received 40 Gy, and minimum dose to 0.03 cc of prostate (Dmin). BFFR was assessed using the Phoenix nadir +2 definition. OS and BFFR were estimated using Kaplan-Meier (KM) methodology with comparisons accomplished using log-rank statistics. Multivariable analysis (MVA) was accomplished with a backwards selection Cox proportional-hazards model with statistical significance taken at the p < 0.05 level. Results: Median FU is 78.4 months. Five- and ten-year OS KM estimates are 90.9 and 73.2%, respectively, with 19 deaths recorded. MVA reveals pretreatment PSA (p = 0.032), percent prostate 40 Gy (p = 0.003), and race (p = 0.031) were predictive of OS. Five- and nine-year BFFR KM estimates are 92.1 and 87.5%, respectively, with 10 biochemical failures recorded. MVA revealed PSA nadir (p < 0.001) was the only factor predictive of BFFR. Specifically, for every one-unit increase in PSA nadir, there was a 4.2-fold increased odds of biochemical failure (HR = 4.248). No significant differences in BFFR were found between favorable intermediate, unfavorable intermediate, and high-risk prostate cancer (p = 0.054) with 7-year KM estimates of 96.6, 81.0, and 85.7%, respectively. Conclusions: Favorable OS and BFFR can be expected after SBRT for intermediate and high-risk prostate cancer with non-significant differences seen for BFFR between favorable intermediate, unfavorable intermediate, and high-risk groups. Our 5-year BFFR compares favorably with the HYPO-RT-PC trial of 84%. PSA nadir was predictive of biochemical failure. This study is ultimately limited by the small absolute number of high-risk patients included.
Collapse
Affiliation(s)
- Anthony Ricco
- Virginia Commonwealth University Health System, Richmond, VA, United States
| | - Gabrielle Barbera
- College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Rachelle Lanciano
- Radiation Oncology, Crozer-Keystone Health System, Springfield, PA, United States
- Philadelphia CyberKnife Center, Havertown, PA, United States
| | - Jing Feng
- Philadelphia CyberKnife Center, Havertown, PA, United States
| | - Alexandra Hanlon
- Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Alicia Lozano
- Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michael Good
- Philadelphia CyberKnife Center, Havertown, PA, United States
| | - Stephen Arrigo
- Radiation Oncology, Crozer-Keystone Health System, Springfield, PA, United States
- Philadelphia CyberKnife Center, Havertown, PA, United States
| | - John Lamond
- Radiation Oncology, Crozer-Keystone Health System, Springfield, PA, United States
- Philadelphia CyberKnife Center, Havertown, PA, United States
| | - Jun Yang
- Philadelphia CyberKnife Center, Havertown, PA, United States
| |
Collapse
|
12
|
Matsukawa K, Arimura T, Orita M, Kondo H, Chuman I, Ogino T, Taira Y, Kudo T, Takamura N. Health-related quality of life in Japanese patients with prostate cancer following proton beam therapy: an institutional cohort study. Jpn J Clin Oncol 2020; 50:519-527. [PMID: 32129447 PMCID: PMC7202140 DOI: 10.1093/jjco/hyaa027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 02/05/2020] [Indexed: 02/02/2023] Open
Abstract
Objective Many treatment options have guaranteed long-term survival in patients with localized prostate cancer and health-related quality of life has become a greater concern for those patients. The purpose of this study was to reveal the health-related quality of life after proton beam therapy and to clarify the differences from other treatment modalities for prostate cancer. Methods Between January 2011 and April 2016, 583 patients were enrolled in the study and health-related quality of life outcomes using the Expanded Prostate Cancer Index Composite questionnaire were evaluated and compared with previous research targeted at Japanese patients. Results We found a significant decrease in the least square mean scores for urinary and bowel domains excluding the incontinence subscale after proton beam therapy (P < 0.0001) and recovery at a year following treatment. The scores for sexual function in patients without androgen deprivation therapy decreased each year after proton beam therapy (P < 0.0001). The scores for hormones in patients without androgen deprivation therapy remained high and those of patients with androgen deprivation therapy were lower before treatment but were comparable to those of non-androgen deprivation therapy patients at 2 years post-treatment. We found that the impact of radiotherapy including proton beam therapy on urinary condition and sexual function was lower than that of surgery. Conclusions For the first time in Japan, we investigated health-related quality of life using Expanded Prostate Cancer Index Composite questionnaires in patients with prostate cancer after proton beam therapy and compared it with other treatment modalities.
Collapse
Affiliation(s)
- Kyoko Matsukawa
- Department of Global Health, Medicine and Welfare, Nagasaki University Graduate School of Biomedical Sciences, Atomic Bomb Disease Institute, Nagasaki, Japan.,Medipolis Proton Therapy and Research Center, Ibusuki, Japan
| | - Takeshi Arimura
- Medipolis Proton Therapy and Research Center, Ibusuki, Japan
| | - Makiko Orita
- Department of Global Health, Medicine and Welfare, Nagasaki University Graduate School of Biomedical Sciences, Atomic Bomb Disease Institute, Nagasaki, Japan
| | - Hisayoshi Kondo
- Department of Global Health, Medicine and Welfare, Nagasaki University Graduate School of Biomedical Sciences, Atomic Bomb Disease Institute, Nagasaki, Japan
| | - Ikuko Chuman
- Medipolis Proton Therapy and Research Center, Ibusuki, Japan
| | - Takashi Ogino
- Medipolis Proton Therapy and Research Center, Ibusuki, Japan
| | - Yasuyuki Taira
- Department of Global Health, Medicine and Welfare, Nagasaki University Graduate School of Biomedical Sciences, Atomic Bomb Disease Institute, Nagasaki, Japan
| | - Takashi Kudo
- Department of Radioisotope Medicine, Nagasaki University Graduate School of Biomedical Sciences, Atomic Bomb Disease Institute, Nagasaki, Japan
| | - Noboru Takamura
- Department of Global Health, Medicine and Welfare, Nagasaki University Graduate School of Biomedical Sciences, Atomic Bomb Disease Institute, Nagasaki, Japan
| |
Collapse
|
13
|
Kawamura H, Kubo N, Sato H, Miyasaka Y, Matsui H, Ito K, Suzuki K, Ohno T. Quality of life in prostate cancer patients receiving particle radiotherapy: A review of the literature. Int J Urol 2019; 27:24-29. [PMID: 31512285 DOI: 10.1111/iju.14102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/18/2019] [Indexed: 12/25/2022]
Abstract
Proton and carbon ion radiotherapy for the treatment of prostate cancer is associated with a lower incidence of adverse events than conventional radiotherapy. There are few reports on the quality of life of patients treated with particle therapy, and limited patient-reported outcomes. Analysis of quality of life is important for patients treated with radiotherapy alone or in combination with hormonal therapy, and long-term results, dose fractionation and costs need to be included in the analysis. This information might help both clinical decision-making and selection of appropriate treatments according to the individual needs of patients. This study reviews the literature on the quality of life and outcomes of patients treated with particle therapy, and discusses future directions.
Collapse
Affiliation(s)
- Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Yuhei Miyasaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroshi Matsui
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan.,Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kazuto Ito
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kazuhiro Suzuki
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan.,Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| |
Collapse
|
14
|
Kubeš J, Vondráček V, Andrlik M, Navrátil M, Sláviková S, Vítek P, Rosina J, Abrahámová J, Prausová J, Grebenyuk A, Dědečková K. Extreme hypofractionated proton radiotherapy for prostate cancer using pencil beam scanning: Dosimetry, acute toxicity and preliminary results. J Med Imaging Radiat Oncol 2019; 63:829-835. [PMID: 31486267 DOI: 10.1111/1754-9485.12947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/29/2019] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Extreme hypofractionated radiotherapy for prostate cancer is a common modality in photon therapy. Pencil beam scanning (PBS) in similar fractionation allows better dose distribution and makes proton therapy more available for such patients. The purpose of this study is the feasibility of extreme proton hypofractionated radiotherapy and publication of early clinical results. METHODS Two hundred patients with early-stage prostate cancer were treated with IMPT (intensity-modulated proton therapy), extreme hypofractionated schedule (36.25 GyE in five fractions) between February 2013 and December 2015. Mean age of the patients was 64.3 years, and the mean value of prostate-specific antigen (PSA) before treatment was 6.83 μg/L (0.6-17.3 μg/L). Ninety-three patients (46.5%) were in the low-risk group. One hundred and seven patients (53.5%) were in the intermediate-risk group. Twenty-nine patients (14.5%) had neoadjuvant hormonal therapy, and no patients had adjuvant hormonal therapy. Acute toxicity, late toxicity and short-term results were evaluated. RESULTS All patients finished radiotherapy without interruptions. The median follow-up time was 36 months. The mean treatment time was 9.5 days (median 9 days). Acute toxicity according to Common Terminology Criteria for Adverse Events (CTCAE) v 4.0 was (gastrointestinal toxicity) GI (grade) G1-17%, G2-3.5%; (genitourinary toxicity) GU G1-40%, G2-19%; and no G3 toxicity was observed. Late toxicity was GI G1-19%, G2-5.5%; GU G1-17%, G2-4%; and no G3 toxicity was observed. PSA relapse was observed in one patient (1.08%) in the low-risk group (pelvic lymph node involvement was detected) and in seven patients (6.5%) in the intermediate-risk group (three lymph node metastases, two lymph node and bone metastases, two PSA relapses). No patient died of prostate cancer, and three patients died from other reasons. No local recurrence of cancer in the prostate was observed. CONCLUSIONS Proton beam radiotherapy for prostate cancer is feasible with a low rate of acute toxicity and promising late toxicity and effectivity.
Collapse
Affiliation(s)
- Jiří Kubeš
- Proton Therapy Center Czech, Prague, Czech Republic.,Department of Oncology, 1st Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic.,Department of Oncology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic.,Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Vladimir Vondráček
- Proton Therapy Center Czech, Prague, Czech Republic.,Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Michal Andrlik
- Proton Therapy Center Czech, Prague, Czech Republic.,Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Matěj Navrátil
- Proton Therapy Center Czech, Prague, Czech Republic.,Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Silvia Sláviková
- Proton Therapy Center Czech, Prague, Czech Republic.,Department of Oncology, 1st Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Pavel Vítek
- Proton Therapy Center Czech, Prague, Czech Republic.,Department of Oncology, 1st Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic.,Department of Oncology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Jozef Rosina
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic.,Department of Medical Biophysics and Informatics, 3rd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jitka Abrahámová
- Proton Therapy Center Czech, Prague, Czech Republic.,Institute of Radiation Oncology, Bulovka Hospital, Prague, Czech Republic
| | - Jana Prausová
- Department of Oncology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Alexander Grebenyuk
- Department of Health Protection and Disaster Medicine, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Kateřina Dědečková
- Proton Therapy Center Czech, Prague, Czech Republic.,Department of Oncology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
15
|
Jackson WC, Silva J, Hartman HE, Dess RT, Kishan AU, Beeler WH, Gharzai LA, Jaworski EM, Mehra R, Hearn JWD, Morgan TM, Salami SS, Cooperberg MR, Mahal BA, Soni PD, Kaffenberger S, Nguyen PL, Desai N, Feng FY, Zumsteg ZS, Spratt DE. Stereotactic Body Radiation Therapy for Localized Prostate Cancer: A Systematic Review and Meta-Analysis of Over 6,000 Patients Treated On Prospective Studies. Int J Radiat Oncol Biol Phys 2019; 104:778-789. [PMID: 30959121 PMCID: PMC6770993 DOI: 10.1016/j.ijrobp.2019.03.051] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/27/2019] [Accepted: 03/31/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE Utilization of stereotactic body radiation therapy (SBRT) for treatment of localized prostate cancer is increasing. Guidelines and payers variably support the use of prostate SBRT. We therefore sought to systematically analyze biochemical recurrence-free survival (bRFS), physician-reported toxicity, and patient-reported outcomes after prostate SBRT. METHODS AND MATERIALS A systematic search leveraging Medline via PubMed and EMBASE for original articles published between January 1990 and January 2018 was performed. This was supplemented by abstracts with sufficient extractable data from January 2013 to March 2018. All prospective series assessing curative-intent prostate SBRT for localized prostate cancer reporting bRFS, physician-reported toxicity, and patient-reported quality of life with a minimum of 1-year follow-up were included. The study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Meta-analyses were performed with random-effect modeling. Extent of heterogeneity between studies was determined by the I2 and Cochran's Q tests. Meta-regression was performed using Hartung-Knapp methods. RESULTS Thirty-eight unique prospective series were identified comprising 6116 patients. Median follow-up was 39 months across all patients (range, 12-115 months). Ninety-two percent, 78%, and 38% of studies included low, intermediate, and high-risk patients. Overall, 5- and 7-year bRFS rates were 95.3% (95% confidence interval [CI], 91.3%-97.5%) and 93.7% (95% CI, 91.4%-95.5%), respectively. Estimated late grade ≥3 genitourinary and gastrointestinal toxicity rates were 2.0% (95% CI, 1.4%-2.8%) and 1.1% (95% CI, 0.6%-2.0%), respectively. By 2 years post-SBRT, Expanded Prostate Cancer Index Composite urinary and bowel domain scores returned to baseline. Increasing dose of SBRT was associated with improved biochemical control (P = .018) but worse late grade ≥3 GU toxicity (P = .014). CONCLUSIONS Prostate SBRT has substantial prospective evidence supporting its use, with favorable tumor control, patient-reported quality of life, and levels of toxicity demonstrated. SBRT has sufficient evidence to be supported as a standard treatment option for localized prostate cancer while ongoing trials assess its potential superiority.
Collapse
Affiliation(s)
- William C Jackson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Jessica Silva
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Holly E Hartman
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Robert T Dess
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Amar U Kishan
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Whitney H Beeler
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Laila A Gharzai
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jason W D Hearn
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Simpa S Salami
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | | | - Brandon A Mahal
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts
| | - Payal D Soni
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - Paul L Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts
| | - Neil Desai
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas
| | - Felix Y Feng
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Zachary S Zumsteg
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
16
|
Moteabbed M, Trofimov A, Khan FH, Wang Y, Sharp GC, Zietman AL, Efstathiou JA, Lu HM. Impact of interfractional motion on hypofractionated pencil beam scanning proton therapy and VMAT delivery for prostate cancer. Med Phys 2018; 45:4011-4019. [PMID: 30007067 DOI: 10.1002/mp.13091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/07/2018] [Accepted: 06/01/2018] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Hypofractionated radiotherapy of prostate cancer is gaining clinical acceptance given its potential increase in therapeutic ratio and evidence for noninferiority and lack of added late toxicities compared to conventional fractionation. However, concerns have been raised that smaller number of fractions might lead to larger dosimetric influence by interfractional motion. We aim to compare the effect of these variations on hypofractionated pencil beam scanning (PBS) proton therapy and volumetric modulated arc therapy (VMAT) for localized prostate cancer. METHODS Weekly CT images were acquired for 6 patients participating in a randomized clinical trial. PBS plans featuring bilateral (BL) and a combination of lateral and anterior-oblique beams (AOL), and VMAT plans were created. All patients were treated to a conventional 79.2 Gy total dose in 44 fractions. For this study, hypofractionated dose to the prostate gland was 51.6 Gy in 12 fractions or 36.25 Gy in 5 fractions, and 32.8, and 23.1 Gy to proximal seminal vesicles, respectively. Patients were simulated with endorectal balloons to aid gland immobilization. Three fiducial markers were implanted for setup guidance. All plans were recomputed on the weekly CT images after aligning with the simulation CT. The entire set of 9 CT images was used for dose recalculation for 12-fraction and only 5 used for the 5-fraction case. Adaptive range adjustments were applied to anterior-oblique beams assuming clinical availability of in vivo range verification. Fractional doses were summed using deformable dose accumulation to approximate the delivered dose. Biologically equivalent dose to 2 Gy(EQD2) was calculated assuming α/β of 1.5 Gy for prostate and 3 Gy for bladder and rectum. RESULTS The median delivered prostate D98 was 0.13/0.14/0.13 Gy(EQD2) smaller than planned for PBS-BL, 0.13/0.27/0.17 Gy(EQD2) for PBS-AOL and 0.59/0.66/0.59 Gy(EQD2) for VMAT, for 44/12/5 fractions, respectively. The largest D98 reduction was 1.5 and 3.5 Gy(EQD2) for CTV1 and CTV2, respectively. Target dose degradation was comparable for all fractionation schemes within each modality. The maximum increase in rectum D2 was 0.98 Gy(EQD2) for a 5-fraction PBS case. CONCLUSIONS The robustness of PBS and VMAT were comparable for all patients for the studied fractionations. The delivered target dose generally remained within clinical tolerance and the deviations were relatively minor for both fractionation schemes. The delivered OAR dose stayed in compliance with the RTOG hypofractionation constraints for all cases.
Collapse
Affiliation(s)
- Maryam Moteabbed
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexei Trofimov
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Fazal H Khan
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, USA
| | - Yi Wang
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory C Sharp
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anthony L Zietman
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hsiao-Ming Lu
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Verma V, Simone CB, Mishra MV. Quality of Life and Patient-Reported Outcomes Following Proton Radiation Therapy: A Systematic Review. J Natl Cancer Inst 2018; 110:4430583. [PMID: 29028221 DOI: 10.1093/jnci/djx208] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/05/2017] [Indexed: 09/19/2023] Open
Abstract
Background As costs of cancer care rise, the importance of documenting value in oncology increases. Proton beam radiotherapy (PBT) has the potential to reduce toxicities in cancer patients, but is relatively expensive and unproven. Evaluating quality of life (QOL) and patient-reported outcomes (PROs) is essential to establishing PBT's "value" in oncologic therapy. The goal of this systematic review was to assess QOL and PROs in patients treated with PBT. Methods Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-guided systematic searches were conducted. The PubMed search engine was the primary data source, along with publications found from references of selected articles, and articles known to the authors published through 2017. Seventeen original investigations were found to have sufficient focus and relevance to be incorporated into the systematic review. Results Studies of skull base (n = 1), brain (n = 1), head/neck (n = 1), lung (n = 1), breast (n = 2), prostate (n = 8), and pediatric (n = 3) malignancies treated with PBT that met eligibility criteria were included. QOL did not deteriorate during PBT for skull base and after PBT for brain tumors, respectively. PROs were higher for PBT than photon-based radiotherapy for both head/neck and lung cancer. Patient-reported breast cosmesis was appropriate after PBT and comparable to photon modalities. PBT in various settings of prostate cancer displayed an expected post-therapy decline; one study showed improved PROs (rectal urgency, bowel frequency) for PBT, and two others showed PROs/QOL comparable with other modalities. Pediatric studies demonstrated improvements in QOL during therapy, with additional increases thereafter. Conclusions Based on limited data, PBT provides favorable QOL/PRO profiles for select brain, head/neck, lung, and pediatric cancers; measures for prostate and breast cancers were more modest. These results have implications for cost-effective cancer care and prudently designed QOL evaluation in ongoing trials, which are discussed. Future data could substantially change the conclusions of this review.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Charles B Simone
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Mark V Mishra
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
18
|
Chuong MD, Hartsell W, Larson G, Tsai H, Laramore GE, Rossi CJ, Wilkinson JB, Kaiser A, Vargas C. Minimal toxicity after proton beam therapy for prostate and pelvic nodal irradiation: results from the proton collaborative group REG001-09 trial. Acta Oncol 2018; 57:368-374. [PMID: 29034790 DOI: 10.1080/0284186x.2017.1388539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Proton beam therapy (PBT) reduces normal organ dose compared to intensity modulated radiation therapy (IMXT) for prostate cancer patients who receive pelvic radiation therapy. It is not known whether this dosimetric advantage results in less gastrointestinal (GI) and genitourinary (GU) toxicity than would be expected from IMXT. MATERIAL AND METHODS We evaluated treatment parameters and toxicity outcomes for non-metastatic prostate cancer patients who received pelvic radiation therapy and enrolled on the PCG REG001-09 trial. Patients who received X-ray therapy and/or brachytherapy were excluded. Of 3210 total enrolled prostate cancer patients, 85 received prostate and pelvic radiation therapy exclusively with PBT. Most had clinically and radiographically negative lymph nodes although 6 had pelvic nodal disease and one also had para-aortic involvement. Pelvic radiation therapy was delivered using either 2 fields (opposed laterals) or 3 fields (opposed laterals and a posterior beam). Median pelvic dose was 46.9 GyE (range 39.7-56) in 25 fractions (range 24-30). Median boost dose to the prostate +/- seminal vesicles was 30 GyE (range 20-41.4) in 16 fractions (range 10-24). RESULTS Median follow-up was 14.5 months (range 2.8-49.2). Acute grade 1, 2, and 3 GI toxicity rates were 16.4, 2.4, 0%, respectively. Acute grade 1, 2, and 3 GU toxicity rates were 60, 34.1, 0%, respectively. CONCLUSIONS Prostate cancer patients who receive pelvic radiation therapy using PBT experience significantly less acute GI toxicity than is expected using IMXT. Further investigation is warranted to confirm whether this favorable acute GI toxicity profile is related to small bowel sparing from PBT.
Collapse
Affiliation(s)
- Michael D. Chuong
- Department of Radiation Oncology, Miami Cancer Institute at Baptist Health South Florida, Miami, FL, USA
| | - William Hartsell
- Northwestern Medicine Chicago Proton Center, Warrenville, IL, USA
| | - Gary Larson
- ProCure Proton Therapy Center Oklahoma City, Oklahoma City, OK, USA
| | - Henry Tsai
- ProCure Proton Therapy Center New Jersey, Somerset, NJ, USA
| | - George E. Laramore
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | | | - J. Ben Wilkinson
- Department of Radiation Oncology, University of Maryland, Baltimore, MD, USA
| | - Adeel Kaiser
- Department of Radiation Oncology, Willis-Knighton Cancer Center, Shreveport, LA, USA
| | - Carlos Vargas
- Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
19
|
Inamdar S, Pushpavanam K, Lentz JM, Bues M, Anand A, Rege K. Hydrogel Nanosensors for Colorimetric Detection and Dosimetry in Proton Beam Radiotherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3274-3281. [PMID: 29303547 DOI: 10.1021/acsami.7b15127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Proton beam therapy (PBT) is a state-of-the-art radiotherapy treatment approach that uses focused proton beams for tumor ablation. A key advantage of this approach over conventional photon radiotherapy (XRT) is the unique dose deposition characteristic of protons, which results in superior healthy tissue sparing. This results in fewer unwanted side effects and improved outcomes for patients. Currently available dosimeters are intrinsic, complex, and expensive and are not routinely used to determine the dose delivered to the tumor. Here, we report a hydrogel-based plasmonic nanosensor for detecting clinical doses used in conventional and hyperfractionated proton beam radiotherapy. In this nanosensor, gold ions, encapsulated in a hydrogel, are reduced to gold nanoparticles following irradiation with proton beams. Formation of gold nanoparticles renders a color change to the originally colorless hydrogel. The intensity of the color can be used to calibrate the hydrogel nanosensor in order to quantify different radiation doses employed during proton treatment. The potential of this nanosensor for clinical translation was demonstrated using an anthropomorphic phantom mimicking a clinical radiotherapy session. The simplicity of fabrication, detection range in the fractionated radiotherapy regime, and ease of detection with translational potential makes this a first-in-kind plasmonic colorimetric nanosensor for applications in clinical proton beam therapy.
Collapse
Affiliation(s)
- Sahil Inamdar
- Chemical Engineering, Arizona State University , Tempe, Arizona 85287-6106, United States
| | - Karthik Pushpavanam
- Chemical Engineering, Arizona State University , Tempe, Arizona 85287-6106, United States
| | - Jarrod M Lentz
- Department of Radiation Oncology, Mayo Clinic Arizona , Phoenix, Arizona 85054, United States
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona , Phoenix, Arizona 85054, United States
| | - Aman Anand
- Department of Radiation Oncology, Mayo Clinic Arizona , Phoenix, Arizona 85054, United States
| | - Kaushal Rege
- Chemical Engineering, Arizona State University , Tempe, Arizona 85287-6106, United States
| |
Collapse
|
20
|
Skórska M, Piotrowski T. Personalized radiotherapy treatment planning based on functional imaging. Rep Pract Oncol Radiother 2017; 22:327-330. [DOI: 10.1016/j.rpor.2017.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/19/2017] [Indexed: 11/30/2022] Open
|