1
|
Farrugia B, Brown K, Knight K, Wright C. A systematic review of tumour position reproducibility and stability in breath-hold for radiation therapy of the upper abdomen. Phys Imaging Radiat Oncol 2025; 34:100751. [PMID: 40231224 PMCID: PMC11995803 DOI: 10.1016/j.phro.2025.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Background and purpose Upper abdominal malignancies are relatively rare, and although surgery is considered the primary treatment option, radiation therapy has an emerging role in the management of liver, pancreas, kidney and adrenal gland tumours. Furthermore, stereotactic radiation therapy for the management of upper abdominal metastases is an expanding clinical indication. Breath-hold is one respiratory motion management strategy used in upper abdominal radiation therapy, and the reproducibility, and stability of breath-hold is critical for overall treatment accuracy. Materials and methods A systematic review of the literature was conducted in Medline, Embase and Cochrane databases with keyword and vocabulary terms related to radiation therapy, breath-hold and upper abdominal tumours. Results Following screening against the selection criteria, 41 studies were included. Breath-hold reproducibility was the most commonly reported outcome and exhale breath-hold was the most common type. Studies were either prospective or retrospective cohort studies, and the mean sample size was 19 participants. The risk of bias of each included study was assessed, and the mean quality assessment score for included studies was 90 % (77-100 %). Median exhale breath-hold cranio-caudal inter-fraction reproducibility was 0.6 mm, (IQR 0.3-1.6 mm), compared to inspiratory breath-hold 0.0 mm (IQR -0.6-2.97 mm). Stability measurements were ≤3 mm in 71 % of studies, irrespective of breath-hold type. Discussion Formulating institutional protocols for best clinical practice regarding breath-hold for upper abdominal tumours is challenging, given the significant variation in practices, interventions and definitions observed in the literature. Further investigation to individualise breath-hold strategies and safety margins is warranted.
Collapse
Affiliation(s)
- Briana Farrugia
- Austin Health, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
- Monash University, Wellington Rd, Clayton, Victoria 3800, Australia
| | - Kerryn Brown
- Austin Health, 145 Studley Rd, Heidelberg, Victoria 3084, Australia
| | - Kellie Knight
- Monash University, Wellington Rd, Clayton, Victoria 3800, Australia
| | - Caroline Wright
- Monash University, Wellington Rd, Clayton, Victoria 3800, Australia
| |
Collapse
|
2
|
Webster A, Mundora Y, Clark CH, Hawkins MA. A systematic review of the impact of abdominal compression and breath-hold techniques on motion, inter-fraction set-up errors, and intra-fraction errors in patients with hepatobiliary and pancreatic malignancies. Radiother Oncol 2024; 201:110581. [PMID: 39395670 DOI: 10.1016/j.radonc.2024.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND AND PURPOSE Reducing motion is vital when radiotherapy is used to treat patients with hepatobiliary (HPB) and pancreatic malignancies. Abdominal compression (AC) and breath-hold (BH) techniques aim to minimise respiratory motion, yet their adoption remains limited, and practices vary. This review examines the impact of AC and BH on motion, set-up errors, and patient tolerability in HPB and pancreatic patients. MATERIALS AND METHODS This systematic review, conducted using PRISMA and PICOS criteria, includes publications from January 2015 to February 2023. Eligible studies focused on AC and BH interventions in adults with HPB and pancreatic malignancies. Endpoints examined motion, set-up errors, intra-fraction errors, and patient tolerability. Due to study heterogeneity, Synthesis Without Meta-Analysis was used, and a 5 mm threshold assessed the impact of motion mitigation. RESULTS In forty studies, 14 explored AC and 26 BH, with 20 on HPB, 13 on pancreatic, and 7 on mixed cohorts. Six studied pre-treatment, 22 inter/intra-fraction errors, and 12 both. Six AC pre-treatment studies showed > 5 mm motion, and 4 BH and 2 AC studies reported > 5 mm inter-fraction errors. Compression studies commonly investigated the arch and belt, and DIBH was the predominant BH technique. No studies compared AC and BH. There was variation in the techniques, and several studies did not follow standardised error reporting. Patient experience and tolerability were under-reported. CONCLUSION The results indicate that AC effectively reduces motion, but its effectiveness may vary between patients. BH can immobilise motion; however, it can be inconsistent between fractions. The review underscores the need for larger, standardised studies and emphasizes the importance of considering the patient's perspective for tailored treatments.
Collapse
Affiliation(s)
- Amanda Webster
- Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK; Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Yemurai Mundora
- Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK
| | - Catharine H Clark
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK; National Physical Laboratory, Teddington, UK
| | - Maria A Hawkins
- Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK; Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
3
|
Guo B, Stephans K, Woody N, Antolak A, Moazzezi M, Xia P. Online verification of breath-hold reproducibility using kV-triggered imaging for liver stereotactic body radiation therapy. J Appl Clin Med Phys 2023; 24:e14045. [PMID: 37211920 PMCID: PMC10476975 DOI: 10.1002/acm2.14045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/23/2023] Open
Abstract
PURPOSE To introduce a new technique for online breath-hold verification for liver stereotactic body radiation therapy (SBRT) based on kilovoltage-triggered imaging and liver dome positions. MATERIAL AND METHODS Twenty-five liver SBRT patients treated with deep inspiration breath-hold were included in this IRB-approved study. To verify the breath-hold reproducibility during treatment, a KV-triggered image was acquired at the beginning of each breath-hold. The liver dome position was visually compared with the expected upper/lower liver boundaries created by expanding/contracting the liver contour 5 mm in the superior-inferior direction. If the liver dome was within the boundaries, delivery continued; otherwise, beam was held manually, and the patient was instructed to take another breath-hold until the liver dome fell within boundaries. The liver dome was delineated on each triggered image. The mean distance between the delineated liver dome to the projected planning liver contour was defined as liver dome position error edome . The mean and maximum edome of each patient were compared between no breath-hold verification (all triggered images) and with online breath-hold verification (triggered images without beam-hold). RESULTS Seven hundred thirteen breath-hold triggered images from 92 fractions were analyzed. For each patient, an average of 1.5 breath-holds (range 0-7 for all patients) resulted in beam-hold, accounting for 5% (0-18%) of all breath-holds; online breath-hold verification reduced the mean edome from 3.1 mm (1.3-6.1 mm) to 2.7 mm (1.2-5.2 mm) and the maximum edome from 8.6 mm (3.0-18.0 mm) to 6.7 mm (3.0-9.0 mm). The percentage of breath-holds with edome >5 mm was reduced from 15% (0-42%) without breath-hold verification to 11% (0-35%) with online breath-hold verification. online breath-hold verification eliminated breath-holds with edome >10 mm, which happened in 3% (0-17%) of all breath-holds. CONCLUSION It is clinically feasible to monitor the reproducibility of each breath-hold during liver SBRT treatment using triggered images and liver dome. Online breath-hold verification improves the treatment accuracy for liver SBRT.
Collapse
Affiliation(s)
- Bingqi Guo
- Department of Radiation OncologyTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| | - Kevin Stephans
- Department of Radiation OncologyTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| | - Neil Woody
- Department of Radiation OncologyTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| | - Alexander Antolak
- Department of Radiation OncologyTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| | - Mojtaba Moazzezi
- Department of Radiation OncologyTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| | - Ping Xia
- Department of Radiation OncologyTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| |
Collapse
|
4
|
Vijayan R, Sheth N, Mekki L, Lu A, Uneri A, Sisniega A, Magaraggia J, Kleinszig G, Vogt S, Thiboutot J, Lee H, Yarmus L, Siewerdsen JH. 3D-2D image registration in the presence of soft-tissue deformation in image-guided transbronchial interventions. Phys Med Biol 2022; 68. [PMID: 36317269 DOI: 10.1088/1361-6560/ac9e3c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Purpose. Target localization in pulmonary interventions (e.g. transbronchial biopsy of a lung nodule) is challenged by deformable motion and may benefit from fluoroscopic overlay of the target to provide accurate guidance. We present and evaluate a 3D-2D image registration method for fluoroscopic overlay in the presence of tissue deformation using a multi-resolution/multi-scale (MRMS) framework with an objective function that drives registration primarily by soft-tissue image gradients.Methods. The MRMS method registers 3D cone-beam CT to 2D fluoroscopy without gating of respiratory phase by coarse-to-fine resampling and global-to-local rescaling about target regions-of-interest. A variation of the gradient orientation (GO) similarity metric (denotedGO') was developed to downweight bone gradients and drive registration via soft-tissue gradients. Performance was evaluated in terms of projection distance error at isocenter (PDEiso). Phantom studies determined nominal algorithm parameters and capture range. Preclinical studies used a freshly deceased, ventilated porcine specimen to evaluate performance in the presence of real tissue deformation and a broad range of 3D-2D image mismatch.Results. Nominal algorithm parameters were identified that provided robust performance over a broad range of motion (0-20 mm), including an adaptive parameter selection technique to accommodate unknown mismatch in respiratory phase. TheGO'metric yielded median PDEiso= 1.2 mm, compared to 6.2 mm for conventionalGO.Preclinical studies with real lung deformation demonstrated median PDEiso= 1.3 mm with MRMS +GO'registration, compared to 2.2 mm with a conventional transform. Runtime was 26 s and can be reduced to 2.5 s given a prior registration within ∼5 mm as initialization.Conclusions. MRMS registration via soft-tissue gradients achieved accurate fluoroscopic overlay in the presence of deformable lung motion. By driving registration via soft-tissue image gradients, the method avoided false local minima presented by bones and was robust to a wide range of motion magnitude.
Collapse
Affiliation(s)
- R Vijayan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - N Sheth
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - L Mekki
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - A Lu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - A Uneri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - A Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | | | | | - S Vogt
- Siemens Healthineers, Erlangen, Germany
| | - J Thiboutot
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institution, Baltimore, MD, United States of America
| | - H Lee
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institution, Baltimore, MD, United States of America
| | - L Yarmus
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institution, Baltimore, MD, United States of America
| | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America.,Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
5
|
Fu HJ, Chen PY, Yang HY, Tsang YW, Lee CY. Liver-directed stereotactic body radiotherapy can be reliably delivered to selected patients without internal fiducial markers-A case series. J Chin Med Assoc 2022; 85:1028-1032. [PMID: 36000954 DOI: 10.1097/jcma.0000000000000798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Tumor motion and the lack of tissue-tumor contrast have been challenging parts of liver-directed stereotactic body radiotherapy (SBRT). In this study, we investigated the possibility of liver-directed SBRT without internal fiducials using breath hold technique and diaphragm matching technique. One hundred thirty-four volumetric images of 13 consecutive patients with either primary or metastatic liver tumors who underwent expiratory breath hold SBRT were compared and analyzed. Reproducibility of diaphragm position between fractions relative to bone was evaluated on image registration software. At median follow-up time of 13 months, 1-year and 2-year local control rates of index lesions were 90% and 72%, respectively. In comparison to diaphragm matching, a greater margin is required for bone matching technique for that 19 of 67 (28%) of all interfractional SI offsets were more than 6 mm, whereas 6 of 67 (9%) intrafractional SI exceeded 6 mm. Despite the small study size, our study showed that breath hold SBRT without internal hepatic fiducial is a valid approach for selected patients.
Collapse
Affiliation(s)
- Hsiao-Ju Fu
- Department of Radiation Therapy and Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan, ROC
| | - Po-Yueh Chen
- Department of Internal Medicine, Ditmanson Medication Foundation, Chia-Yi Christian Hospital, Chiayi, Taiwan, ROC
| | - Hsin-Yi Yang
- Clinical Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan, ROC
| | - Yuk-Wah Tsang
- Department of Radiation Therapy and Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan, ROC
| | - Cheng-Yen Lee
- Department of Radiation Therapy and Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan, ROC
| |
Collapse
|
6
|
van Kesteren Z, Veldman JK, Parkes MJ, Stevens MF, Balasupramaniam P, van den Aardweg JG, van Tienhoven G, Bel A, van Dijk IWEM. Quantifying the reduction of respiratory motion by mechanical ventilation with MRI for radiotherapy. Radiat Oncol 2022; 17:99. [PMID: 35597956 PMCID: PMC9123684 DOI: 10.1186/s13014-022-02068-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Due to respiratory motion, accurate radiotherapy delivery to thoracic and abdominal tumors is challenging. We aimed to quantify the ability of mechanical ventilation to reduce respiratory motion, by measuring diaphragm motion magnitudes in the same volunteers during free breathing (FB), mechanically regularized breathing (RB) at 22 breaths per minute (brpm), variation in mean diaphragm position across multiple deep inspiration breath-holds (DIBH) and diaphragm drift during single prolonged breath-holds (PBH) in two MRI sessions. Methods In two sessions, MRIs were acquired from fifteen healthy volunteers who were trained to be mechanically ventilated non-invasively We measured diaphragm motion amplitudes during FB and RB, the inter-quartile range (IQR) of the variation in average diaphragm position from one measurement over five consecutive DIBHs, and diaphragm cranial drift velocities during single PBHs from inhalation (PIBH) and exhalation (PEBH) breath-holds. Results RB significantly reduced the respiratory motion amplitude by 39%, from median (range) 20.9 (10.6–41.9) mm during FB to 12.8 (6.2–23.8) mm. The median IQR for variation in average diaphragm position over multiple DIBHs was 4.2 (1.0–23.6) mm. During single PIBHs with a median duration of 7.1 (2.0–11.1) minutes, the median diaphragm cranial drift velocity was 3.0 (0.4–6.5) mm/minute. For PEBH, the median duration was 5.8 (1.8–10.2) minutes with 4.4 (1.8–15.1) mm/minute diaphragm drift velocity. Conclusions Regularized breathing at a frequency of 22 brpm resulted in significantly smaller diaphragm motion amplitudes compared to free breathing. This would enable smaller treatment volumes in radiotherapy. Furthermore, prolonged breath-holding from inhalation and exhalation with median durations of six to seven minutes are feasible. Trial registration Medical Ethics Committee protocol NL.64693.018.18.
Collapse
Affiliation(s)
- Z van Kesteren
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | - J K Veldman
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - M J Parkes
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - M F Stevens
- Department of Anesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Department of Anesthesiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - P Balasupramaniam
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - J G van den Aardweg
- Department of Pulmonology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - G van Tienhoven
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - A Bel
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - I W E M van Dijk
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Thaper D, Yadav HP, Sharma D, Kamal R, Singh G, Oinam AS, Kumar V. Degree of reduction in normal liver complication probability from free-breathing to breath-hold liver SBRT: a dose-escalation strategy using radiation dose-volume effect. Biomed Phys Eng Express 2021; 8. [PMID: 34874286 DOI: 10.1088/2057-1976/ac3fe5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 11/12/2022]
Abstract
Introduction. This study aimed to analyze the degree of reduction in normal liver complication probability (NTCP) from free-breathing (FB) to breath-hold (BH) liver SBRT. The effect of the radiation dose-volume on the mean liver dose (MLD) was also analyzed due to dose prescription, normal liver volume (NLV), and PTV.Materials and Methods. Thirty-three stereotactic body radiation therapy (SBRT) cases of hepatocellular carcinoma were selected, retrospectively. For FB, the treatments were planned on average intensity projection scan (CTavg), and patient-specific internal target volume (ITV) margins were applied. To simulate the BH treatment, computed tomography (CT) scan correspond to the 40%-50% of the respiratory cycle (CT40%-50%) was chosen, and an appropriate intrafraction margin of 2 mm, 1.5 mm, and 1.5 mm were given in craniocaudal (CC), superior-inferior (SI), and lateral direction to generate the final iGTV. As per RTOG 1112, all organs at risk (OAR's) were considered during the optimization of treatment plans. NTCP was calculated using LKB fractionated model. Multivariate regression analysis was performed to see the effect of EQD2Gy, NLV, and PTV on MLD2Gy.Results.A significant dosimetric difference was observed in the normal liver (liver-ITV/iGTV). A reduction of 1.7% in NTCP was observed from FB to BH technique. The leverage of dose escalation is more in BH because MLD2Gycorresponds to 5%, 10%, 20%, and 50% NTCP was 0.099 Gy, 0.41 Gy, 1.21 Gy, and 3.432 Gy more in BH as compared to FB technique. In MVRA, the major factor which was attributed to a change in MLD2Gyis EQD2Gy. Conclusion. From FB to BH technique, a significant reduction in NTCP was observed. The dose prescription is a major factor attributed to the change in MLD2Gy. Advances in knowledge: If feasible, prefer BH treatment either for tumor dose escalation or for the reduction in NTCP.
Collapse
Affiliation(s)
- Deepak Thaper
- Centre for Medical Physics, Panjab University, Chandigarh, India.,Radiation Oncology Department, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Hanuman P Yadav
- Radiation Oncology Department, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Deepti Sharma
- Radiation Oncology Department, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rose Kamal
- Centre for Medical Physics, Panjab University, Chandigarh, India.,Radiation Oncology Department, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gaganpreet Singh
- Centre for Medical Physics, Panjab University, Chandigarh, India.,Radiotherapy Department, PGIMER, Regional Cancer Centre, Chandigarh, India
| | - Arun S Oinam
- Radiotherapy Department, PGIMER, Regional Cancer Centre, Chandigarh, India
| | - Vivek Kumar
- Centre for Medical Physics, Panjab University, Chandigarh, India
| |
Collapse
|
8
|
Kim TG, Kang KM, Park B, Park J, Song YG, Kim KM, Shim S, Yu KJ, Lee HW. Interfractional diaphragmatic position variation according to stomach volume change during respiratory-gated radiotherapy for hepatocellular carcinoma. Med Phys 2021; 48:5531-5539. [PMID: 34173976 DOI: 10.1002/mp.15055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE We evaluated the correlation between stomach volume change and interfractional baseline shifts of the diaphragm in image-guided radiotherapy (IGRT) for hepatocellular carcinoma (HCC). MATERIALS AND METHODS Twenty-four patients with HCC underwent ten fractions of IGRT, and a total of 240 cone beam computed tomography (CBCT) and on-board imager (OBI) kV image sets were acquired. These image sets were retrospectively analyzed. Baseline shifts of the diaphragm relative to bone and stomach volume change ratios were evaluated using four-dimensional simulation CT, kV image, and CBCT images. Associations between baseline shifts and patient physiologic factors were investigated. RESULTS The average baseline shift of the diaphragm in the superior-inferior (SI) direction was 1.5 mm (standard deviation 4.6 mm), which was higher than the shift in other directions (0.7, 2.0 mm and 0.9, 2.6 mm in right-left (RL) and anterior-posterior (AP) directions, respectively). Interfractional baseline shifts of the diaphragm in the SI and AP directions were positively correlated with the stomach volume change ratio (Pearson's r: 0.416 and 0.302, p-value: <0.001 and <0.001, respectively). CONCLUSIONS The interfractional baseline shifts of the diaphragm in the SI and AP directions correlated well with stomach volume changes. Efforts to maintain a constant stomach volume before the simulation and each treatment, such as fasting, may reduce interfractional baseline shifts of liver tumors.
Collapse
Affiliation(s)
- Tae Gyu Kim
- Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Ki Mun Kang
- Department of Radiation Oncology and Institute of Health Science, Gyeongsang National University College of Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Byungdo Park
- Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Jeehoon Park
- Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Yun Gyu Song
- Department of Radiology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Kwang Min Kim
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Sanggoon Shim
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Kil Jong Yu
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Hyoun Wook Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| |
Collapse
|
9
|
Takahashi S, Nishide T, Tsuzuki M, Katayama H, Anada M, Kinoshita T, Kozai S, Shibata T. Target coverage of daily cone-beam computed tomography in breath-hold image-guided radiotherapy for gastric lymphoma. BJR Open 2021; 2:20200062. [PMID: 34381938 PMCID: PMC8320113 DOI: 10.1259/bjro.20200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 11/05/2022] Open
Abstract
Objectives We evaluated retrospectively the daily target coverage using cone-beam computed tomography (CBCT) in breath-hold image-guided radiotherapy (BH-IGRT) for gastric lymphoma. Methods BH-IGRT was performed using a prescribed dose of 30.6 Gy in 17 fractions for the whole stomach. We assessed the target coverage of the whole stomach on daily CBCT images [daily clinical target volume (CTV)], which was delineated individually by two observers. We evaluated V95% (percentage of volume receiving ≥95% of the prescribed dose) of daily CTV. Results In total, 102 fractions from 6 patients were assessed. The mean V95% of daily CTV was 97.2%, which was over 95%. In two of six patients, the V95% of daily CTV was over 95% for either observer in all fractions. One patient had significant interobserver variation (p = 0.013). In 95 fractions (93%), the V95% of daily CTV was over 95% for either observer. Conclusion Daily target coverage for CTV in BH-IGRT for gastric lymphoma seems to be favorable, even when using CBCT. Advances in knowledge A previous study ascertained good daily target coverage in BH-IGRT for gastric lymphoma using in-room CT. Even when using CBCT in our study, daily target coverage for CTV in BH-IGRT for gastric lymphoma seems to be favorable.
Collapse
Affiliation(s)
- Shigeo Takahashi
- Department of Radiation Oncology, Kagawa University Hospital, Kagawa, Japan
| | - Takamasa Nishide
- Department of Radiation Oncology, Kagawa University Hospital, Kagawa, Japan
| | - Masato Tsuzuki
- Department of Clinical Radiology, Kagawa University Hospital, Kagawa, Japan
| | - Hiroki Katayama
- Department of Clinical Radiology, Kagawa University Hospital, Kagawa, Japan
| | - Masahide Anada
- Department of Radiation Oncology, Kagawa University Hospital, Kagawa, Japan
| | | | - Shohei Kozai
- Department of Radiation Oncology, Kagawa University Hospital, Kagawa, Japan
| | - Toru Shibata
- Department of Radiation Oncology, Kagawa University Hospital, Kagawa, Japan
| |
Collapse
|
10
|
Takemasa K, Kato T, Narita Y, Kato M, Yamazaki Y, Ouchi H, Oyama S, Yamaguchi H, Wada H, Murakami M. The impact of different setup methods on the dose distribution in proton therapy for hepatocellular carcinoma. J Appl Clin Med Phys 2021; 22:63-71. [PMID: 33595910 PMCID: PMC7984466 DOI: 10.1002/acm2.13178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose To investigate the impact of different setup methods, vertebral body matching (VM), diaphragm matching (DM), and marker matching (MM), on the dose distribution in proton therapy (PT) for hepatocellular carcinoma (HCC). Materials and Methods Thirty‐eight HCC lesions were studied retrospectively to assess changes in the dose distribution on two computed tomography (CT) scans. One was for treatment planning (1st‐CT), and the other was for dose confirmation acquired during the course of PT (2nd‐CT). The dose coverage of the clinical target volume (CTV‐D98) and normal liver volume that received 30 Gy relative biological effectiveness (RBE) (liver‐V30) were evaluated under each condition. Initial treatment planning on the 1st‐CT was defined as reference, and three dose distributions recalculated using VM, DM, and MM on the 2nd‐CT, were compared to it, respectively. In addition, the relationship between the CTV‐D98 of each method and the distance between the center of mass (COM) of the CTV and the right diaphragm top was evaluated. Results For CTV‐D98, significant differences were observed between the reference and VM and DM, respectively (P = 0.013, P = 0.015). There were also significant differences between MM and VM and DM, respectively (P = 0.018, P = 0.036). Regarding liver‐V30, there was no significant difference in any of the methods, and there were no discernable difference due to the different setup methods. In DM, only two out of 34 cases with a distance from right diaphragm top to COM of CTV of 90 mm or less that CTV‐D98 difference was 5% or more and CTV‐D98 was worse than VM were confirmed. Conclusion Although MM is obviously the most effective method, it is suggested that DM may be particularly effective in cases where the distance from right diaphragm top to COM of CTV of 90 mm or less.
Collapse
Affiliation(s)
- Kimihiro Takemasa
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Takahiro Kato
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan.,Preparing Section for New Faculty of Medical Science, Fukushima Medical University, Fukushima, Japan
| | - Yuki Narita
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Masato Kato
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Yuhei Yamazaki
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Hisao Ouchi
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Sho Oyama
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Hisashi Yamaguchi
- Department of Radiation Oncology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Hitoshi Wada
- Department of Radiation Oncology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Masao Murakami
- Department of Radiation Oncology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| |
Collapse
|
11
|
Sasaki M, Ikushima H, Sakuragawa K, Yokoishi M, Tsuzuki A, Sugimoto W. Determination of reproducibility of end-exhaled breath-holding in stereotactic body radiation therapy. JOURNAL OF RADIATION RESEARCH 2020; 61:977-984. [PMID: 32930802 PMCID: PMC7674682 DOI: 10.1093/jrr/rraa079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Methods to evaluate the positional reproducibility of breath-hold irradiation mostly require manual operation. The purpose of this study is to propose a method to determine the reproducibility of breath-hold irradiation of lung tumors between fractions using non-artificial methods. This study included 13 patients who underwent terminal exhaled breath-hold irradiation for primary and metastatic lung cancer. All subjects received a prescribed dose of 60 Gy/8 fractions. The contours of the gross tumor volume (GTV) were extracted by threshold processing using treatment-planning computed tomography (CT) and cone-beam CT (CBCT), which was done just before the beginning of the treatment. The method proposed in this study evaluates the dice similarity coefficient (DSC) and Hausdorff distance (HD) by comparing two volumes, the GTVCTS (GTV obtained from treatment-planning CT) and GTVCBCT (GTV obtained from CBCT). The reference contours for DSC and HD are represented by GTVCTS. The results demonstrated good visual agreement for cases with a DSC of ~0.7. However, apparent misalignment occurred when the DSC was <0.5. HD was >2 mm in 3 out of 13 cases, and when the DSC was ~0.7, the HD was ~1 mm. In addition, cases with greater HD also demonstrated more significant variability. It was found that the DSC and HD evaluation methods for the positional reproducibility of breath-hold irradiation proposed in this study are straightforward and can be performed without the involvement of humans. Our study is of extreme significance in the field of radiation studies.
Collapse
Affiliation(s)
- Motoharu Sasaki
- Corresponding author. Department of Therapeutic Radiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, Tokushima 770-8503, Japan. Tel: +81-88-633-9053; Fax: +81-88-633-9051;
| | - Hitoshi Ikushima
- Department of Therapeutic Radiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, Tokushima 770-8503, Japan
| | - Kanako Sakuragawa
- Department of Radiological Technology, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima, Tokushima 770-8503, Japan
| | - Michihiro Yokoishi
- Department of Radiological Technology, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima, Tokushima 770-8503, Japan
| | - Akira Tsuzuki
- Department of Radiological Technology, Kochi Medical School Hospital, 185-1 Kohasu, Oko-cho, Nankoku-shi, Kochi 783-8505, Japan
| | - Wataru Sugimoto
- Department of Radiological Technology, Tokushima Prefectural Central Hospital, 1-10-3 Kuramoto-cho, Tokushima, Tokushima 770-8539, Japan
| |
Collapse
|
12
|
Lo KM, Wu VW, Li Y, Jun Xu H. Factors affecting target motion in stereotactic body radiotherapy of liver cancer using CyberKnife. J Med Imaging Radiat Oncol 2020; 64:408-413. [PMID: 32174026 DOI: 10.1111/1754-9485.13020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION In stereotactic body radiation therapy (SBRT) of solitary liver cancer, organ motion due to respiration is an important factor in the definition of planning target volume (PTV). This study evaluated the potential associations of target motion with gross tumour volume (GTV) size, tumour location, Child-Pugh score and intra-fraction treatment time in SBRT of liver cancer treated by CyberKnife. METHODS Translational motion data of 145 liver cancer patients, who were previously treated by CyberKnife with free breathing under tumour tracking, were recorded in the log files of the motion tracking system and analysed. The factors including target location based on liver segments, Child-Pugh score which was an indication of liver cirrhosis, GTV size and intra-fraction treatment time were recorded and their associations with the magnitude of target movement were evaluated. RESULTS Target location demonstrated significant association with the translational target motion in the supero-inferior (SI) and left-right (LR) directions but less in antero-posterior (AP) direction. Tumours located at the peripheral segments were more affected than the central segments. Child-Pugh score and GTV size were not significantly associated with target motion in any direction. Longer intra-fraction treatment time generally increased target motion in the SI and LR directions. CONCLUSION In SBRT of liver cancer, the target motions in SI and LR directions were correlated with the location of target and treatment time, but not with Child-Pugh score and GTV size. These results should assist in deciding the GTV-PTV margin in SBRT treatment planning for solitary liver cancer.
Collapse
Affiliation(s)
- Kevin My Lo
- Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Vincent Wc Wu
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Yu Li
- Department of Radiation Oncology, 302 Military Hospital, Beijing, China
| | - Hui Jun Xu
- Department of Radiation Oncology, 302 Military Hospital, Beijing, China
| |
Collapse
|
13
|
Lewis B, Cadrain R, Fields E, Kim S, Kim T. A pressure based respiratory motion management system with biofeedback for MR-based radiotherapy. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|