1
|
Wojtkowska A, Małek A, Giziński S, Sapierzyński R, Rodo A, Sokołowska J, Zabielska-Koczywąs KA, Wojtalewicz A, Walewska M, Kautz E, Ostrzeszewicz M, Lechowski R. Comparison of MMP-2, MMP-9, COX-2, and PGP Expression in Feline Injection-Site and Feline Noninjection-Site Sarcomas-Pilot Study. Animals (Basel) 2024; 14:2110. [PMID: 39061572 PMCID: PMC11273489 DOI: 10.3390/ani14142110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Feline injection-site sarcomas (FISSs) are aggressive neoplasms that have been associated mostly with vaccination. Feline noninjection-site sarcomas (non-FISSs) are less frequently observed in cats and may arise in any anatomic site. This study aimed to determine the differences in the expression of the selected proteins (matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), cyclooxygenase-2 (COX-2), and P-glycoprotein (PGP)) and their correlation with the mitotic count in FISS and non-FISS, in order to characterize their immunohistochemical features. A preliminary study of eleven samples of FISS and eight samples of non-FISS was performed using immunohistochemistry. Among all the tested sarcomas, 80.4% of the tumors were positive for COX-2, 90.2% were positive for MMP-9, and 100% were positive for PGP. The results showed that the expressions of COX-2, MMP-9, and PGP were significantly higher in FISS than in non-FISS (COX-2-p ≤ 0.001; MMP-9-p ≤ 0.05; and PGP-p ≤ 0.05). A Spearman rank correlation analysis showed a moderate negative correlation between the expression of COX-2 and MMP-9 in FISS (r = -0.52). A strong negative correlation between COX-2 and PGP (r = -0.81), a moderate positive correlation between MMP-2 and MMP-9 (r = +0.69), and a moderate negative correlation between MMP-2 and PGP (r = -0.44) were observed in non-FISS. In summary, our study presents the immunohistochemical profile of the proteins involved with inflammation and carcinogenesis in FISS and non-FISS, which can contribute to expanding the knowledge of tumor biology.
Collapse
Affiliation(s)
- Agata Wojtkowska
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.M.); (K.A.Z.-K.); (A.W.); (M.W.); (M.O.); (R.L.)
| | - Anna Małek
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.M.); (K.A.Z.-K.); (A.W.); (M.W.); (M.O.); (R.L.)
| | - Sławomir Giziński
- Department of Large Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Science, 02-787 Warsaw, Poland; (S.G.); (E.K.)
| | - Rafał Sapierzyński
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (R.S.); (A.R.)
| | - Anna Rodo
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (R.S.); (A.R.)
| | - Justyna Sokołowska
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Katarzyna A. Zabielska-Koczywąs
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.M.); (K.A.Z.-K.); (A.W.); (M.W.); (M.O.); (R.L.)
| | - Anna Wojtalewicz
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.M.); (K.A.Z.-K.); (A.W.); (M.W.); (M.O.); (R.L.)
| | - Magdalena Walewska
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.M.); (K.A.Z.-K.); (A.W.); (M.W.); (M.O.); (R.L.)
| | - Ewa Kautz
- Department of Large Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Science, 02-787 Warsaw, Poland; (S.G.); (E.K.)
| | - Magdalena Ostrzeszewicz
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.M.); (K.A.Z.-K.); (A.W.); (M.W.); (M.O.); (R.L.)
| | - Roman Lechowski
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.M.); (K.A.Z.-K.); (A.W.); (M.W.); (M.O.); (R.L.)
| |
Collapse
|
2
|
Weinekötter J, Gurtner C, Protschka M, von Bomhard W, Böttcher D, Alber G, Kiefer I, Steiner JM, Seeger J, Heilmann RM. Tissue S100/calgranulin expression and blood neutrophil-to-lymphocyte ratio (NLR) in prostatic disorders in dogs. BMC Vet Res 2023; 19:234. [PMID: 37946179 PMCID: PMC10633940 DOI: 10.1186/s12917-023-03792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Prostatic carcinoma (PCA) is a rare but severe condition in dogs that is similar to the androgen-independent form of PCA in men. In contrast to humans, PCA is difficult to diagnose in dogs as reliable biomarkers, available for PCA screening in human medicine, are currently lacking in small animal oncology. Calprotectin (S100A8/A9) and S100A12 are Ca2+-binding proteins of the innate immune system with promising potential to distinguish malignant from benign urogenital tract conditions, similar to the blood neutrophil-to-lymphocyte-ratio (NLR). However, both have not yet been extensively investigated in dogs with PCA. Thus, this study aimed to evaluate the expression of the S100/calgranulins (calprotectin, S100A12, and their ratio [Cal-ratio]) in prostatic biopsies from nine dogs with PCA and compare them to those in dogs with benign prostatic lesions (eight dogs with prostatitis and ten dogs with benign prostatic hyperplasia [BPH]) as well as five healthy controls. In addition, blood NLRs were investigated in twelve dogs with PCA and 22 dogs with benign prostatic conditions. RESULTS Tissue S100A8/A9+ cell counts did not differ significantly between tissue from PCA and prostatitis cases (P = 0.0659) but were significantly higher in dogs with prostatitis than BPH (P = 0.0013) or controls (P = 0.0033). S100A12+ cell counts were significantly lower in PCA tissues than in prostatitis tissue (P = 0.0458) but did not differ compared to BPH tissue (P = 0.6499) or tissue from controls (P = 0.0622). Cal-ratios did not differ significantly among the groups but were highest in prostatitis tissues and significantly higher in those dogs with poor prostatitis outcomes than in patients that were still alive at the end of the study (P = 0.0455). Blood NLR strongly correlated with prostatic tissue S100A8/A9+ cell counts in dogs with PCA (ρ = 0.81, P = 0.0499) but did not differ among the disease groups of dogs. CONCLUSIONS This study suggests that the S100/calgranulins play a role in malignant (PCA) and benign (prostatic inflammation) prostatic conditions and supports previous results in lower urinary tract conditions in dogs. These molecules might be linked to the inflammatory environment with potential effects on the inflammasome. The blood NLR does not appear to aid in distinguishing prostatic conditions in dogs. Further investigation of the S100/calgranulin pathways and their role in modulation of tumor development, progression, and metastasis in PCA is warranted.
Collapse
Affiliation(s)
- Jana Weinekötter
- Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, DE-04103, Leipzig, SN, Germany
| | - Corinne Gurtner
- Institute of Animal Pathology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, BE, CH-3001, Switzerland
| | - Martina Protschka
- Institute of Immunology, College of Veterinary Medicine, Biotechnological-Biomedical Center, Leipzig University, Deutscher Platz 05, DE-04103, Leipzig, SN, Germany
| | - Wolf von Bomhard
- Synlab Specialty Center for Veterinary Pathology, Hartelstrasse 30, DE-80689, Munich, BY, Germany
| | - Denny Böttcher
- Institut for Veterinary Pathology, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, DE-04103, Leipzig, SN, Germany
| | - Gottfried Alber
- Institute of Immunology, College of Veterinary Medicine, Biotechnological-Biomedical Center, Leipzig University, Deutscher Platz 05, DE-04103, Leipzig, SN, Germany
| | - Ingmar Kiefer
- Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, DE-04103, Leipzig, SN, Germany
| | - Joerg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TAMU, College Station, TX, 4474, 77843-4474, USA
| | - Johannes Seeger
- Institute of Anatomy, Histology and Embryology, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 43, DE-04103, Leipzig, SN, Germany
| | - Romy M Heilmann
- Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, DE-04103, Leipzig, SN, Germany.
| |
Collapse
|
3
|
Weinekötter J, Gurtner C, Protschka M, von Bomhard W, Böttcher D, Schlinke A, Alber G, Rösch S, Steiner JM, Seeger J, Oechtering GU, Heilmann RM. Tissue S100/calgranulin expression and blood neutrophil-to-lymphocyte ratio (NLR) in dogs with lower urinary tract urothelial carcinoma. BMC Vet Res 2022; 18:412. [PMID: 36411489 PMCID: PMC9680134 DOI: 10.1186/s12917-022-03513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Urothelial carcinoma (UC) is the most common neoplasm of the canine lower urinary tract, affecting approximately 2% of dogs. Elderly female patients of certain breeds are predisposed, and clinical signs of UC can easily be confused with urinary tract infection or urolithiasis. Diagnosis and treatment are challenging given the lack of disease-specific markers and treatments. The S100A8/A9 complex and S100A12 protein are Ca2+-binding proteins expressed by cells of the innate immune system and have shown promise as urinary screening markers for UC. The neutrophil-to-lymphocyte ratio (NLR) can also aid in distinguishing certain neoplastic from inflammatory conditions. Our study aimed to evaluate the tissue expression of S100/calgranulins and the blood NLR in dogs with UC. Urinary bladder and/or urethral tissue samples from dogs with UC (n = 10), non-neoplastic inflammatory lesions (NNUTD; n = 6), and no histologic changes (n = 11) were evaluated using immunohistochemistry. Blood NLRs were analyzed in dogs with UC (n = 22) or NNUTD (n = 26). RESULTS Tissue S100A12-positive cell counts were significantly higher in dogs with lower urinary tract disease than healthy controls (P = 0.0267 for UC, P = 0.0049 for NNUTD), with no significant difference between UC and NNUTD patients. Tissue S100A8/A9-positivity appeared to be higher with NNUTD than UC, but this difference did not reach statistical significance. The S100A8/A9+-to-S100A12+ ratio was significantly decreased in neoplastic and inflamed lower urinary tract tissue compared to histologically normal specimens (P = 0.0062 for UC, P = 0.0030 for NNUTD). NLRs were significantly higher in dogs with UC than in dogs with NNUTD, and a cut-off NLR of ≤ 2.83 distinguished UC from NNUTD with 41% sensitivity and 100% specificity. Higher NLRs were also associated with a poor overall survival time (P = 0.0417). CONCLUSIONS These results confirm that the S100/calgranulins play a role in the immune response to inflammatory and neoplastic lower urinary tract diseases in dogs, but the tissue expression of these proteins appears to differ from their concentrations reported in urine samples. Further investigations of the S100/calgranulin pathways in UC and their potential as diagnostic or prognostic tools and potential therapeutic targets are warranted. The NLR as a routinely available marker might be a useful surrogate to distinguish UC from inflammatory conditions.
Collapse
Affiliation(s)
- Jana Weinekötter
- grid.9647.c0000 0004 7669 9786Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, 04103 Leipzig, SN Germany
| | - Corinne Gurtner
- grid.5734.50000 0001 0726 5157Institute of Animal Pathology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3001 Bern, BE Switzerland
| | - Martina Protschka
- grid.9647.c0000 0004 7669 9786Institute of Immunology, College of Veterinary Medicine, Biotechnological-Biomedical Center, Leipzig University, Deutscher Platz 5, 04103 Leipzig, SN Germany
| | - Wolf von Bomhard
- Specialty Center for Veterinary Pathology, Hartelstrasse 30, E80689 Munich, BY Germany
| | - Denny Böttcher
- grid.9647.c0000 0004 7669 9786Institute for Veterinary Pathology, College of Veterinary Medicine, Leipzig University, An Den Tierkliniken 33, E04103 Leipzig, SN Germany
| | - Annika Schlinke
- grid.9647.c0000 0004 7669 9786Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, 04103 Leipzig, SN Germany
| | - Gottfried Alber
- grid.9647.c0000 0004 7669 9786Institute of Immunology, College of Veterinary Medicine, Biotechnological-Biomedical Center, Leipzig University, Deutscher Platz 5, 04103 Leipzig, SN Germany
| | - Sarah Rösch
- grid.9647.c0000 0004 7669 9786Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, 04103 Leipzig, SN Germany ,grid.412970.90000 0001 0126 6191Small Animal Clinic, University of Veterinary Medicine Hannover Foundation, Bünteweg 9, 30559 Hannover, NI Germany
| | - Joerg M. Steiner
- grid.264756.40000 0004 4687 2082Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TAMU 4474, College Station, TX 77843-4474 USA
| | - Johannes Seeger
- grid.9647.c0000 0004 7669 9786Institute of Anatomy, Histology and Embryology, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, SN Germany
| | - Gerhard U. Oechtering
- grid.9647.c0000 0004 7669 9786Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, 04103 Leipzig, SN Germany
| | - Romy M. Heilmann
- grid.9647.c0000 0004 7669 9786Department for Small Animals, College of Veterinary Medicine, Leipzig University, An den Tierkliniken 23, 04103 Leipzig, SN Germany
| |
Collapse
|
4
|
Tsamouri MM, Steele TM, Mudryj M, Kent MS, Ghosh PM. Comparative Cancer Cell Signaling in Muscle-Invasive Urothelial Carcinoma of the Bladder in Dogs and Humans. Biomedicines 2021; 9:1472. [PMID: 34680588 PMCID: PMC8533305 DOI: 10.3390/biomedicines9101472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Muscle-invasive urothelial carcinoma (MIUC) is the most common type of bladder malignancy in humans, but also in dogs that represent a naturally occurring model for this disease. Dogs are immunocompetent animals that share risk factors, pathophysiological features, clinical signs and response to chemotherapeutics with human cancer patients. This review summarizes the fundamental pathways for canine MIUC initiation, progression, and metastasis, emerging therapeutic targets and mechanisms of drug resistance, and proposes new opportunities for potential prognostic and diagnostic biomarkers and therapeutics. Identifying similarities and differences between cancer signaling in dogs and humans is of utmost importance for the efficient translation of in vitro research to successful clinical trials for both species.
Collapse
Affiliation(s)
- Maria Malvina Tsamouri
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Graduate Group in Integrative Pathobiology, University of California Davis, Davis, CA 95616, USA
| | - Thomas M. Steele
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Michael S. Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Paramita M. Ghosh
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| |
Collapse
|
5
|
Cekanova M, Pandey S, Olin S, Ryan P, Stokes JE, Hecht S, Martin-Jimenez T, Uddin MJ, Marnett LJ. Pharmacokinetic characterization of fluorocoxib D, a cyclooxygenase-2-targeted optical imaging agent for detection of cancer. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200044R. [PMID: 32860356 PMCID: PMC7456637 DOI: 10.1117/1.jbo.25.8.086005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Fluorocoxib D, N-[(rhodamin-X-yl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide, is a water-soluble optical imaging agent to detect cyclooxygenase-2 (COX-2)-expressing cancer cells. AIM We evaluated the pharmacokinetic and safety properties of fluorocoxib D and its ability to detect cancer cells in vitro and in vivo. APPROACH Pharmacokinetic parameters of fluorocoxib D were assessed from plasma collected at designated time points after intravenous administration of 1 mg / kg fluorocoxib D in six research dogs using a high-performance liquid chromatography analysis. Safety of fluorocoxib D was assessed for 3 days after its administration using physical assessment, complete blood count, serum chemistry profile, and complete urinalysis in six research dogs. The ability of fluorocoxib D to detect COX-2-expressing cancer cells was performed using human 5637 cells in vitro and during rhinoscopy evaluation of specific fluorocoxib D uptake by canine cancer cells in vivo. RESULTS No evidence of toxicity and no clinically relevant adverse events were noted in dogs. Peak concentration of fluorocoxib D (114.8 ± 50.5 ng / ml) was detected in plasma collected at 0.5 h after its administration. Pretreatment of celecoxib blocked specific uptake of fluorocoxib D in COX-2-expressing human 5637 cancer cells. Fluorocoxib D uptake was detected in histology-confirmed COX-2-expressing head and neck cancer during rhinoscopy in a client-owned dog in vivo. Specific tumor-to-normal tissue ratio of detected fluorocoxib D signal was in an average of 3.7 ± 0.9 using Image J analysis. CONCLUSIONS Our results suggest that fluorocoxib D is a safe optical imaging agent used for detection of COX-2-expressing cancers and their margins during image-guided minimally invasive biopsy and surgical procedures.
Collapse
Affiliation(s)
- Maria Cekanova
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
- The University of Tennessee, UT-ORNL Graduate School of Genome, Science and Technology, Knoxville, Tennessee, United States
| | - Sony Pandey
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
| | - Shelly Olin
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
| | - Phillip Ryan
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
| | - Jennifer E. Stokes
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
| | - Silke Hecht
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee, United States
| | - Tomas Martin-Jimenez
- The University of Tennessee, College of Veterinary Medicine, Department of Biomedical and Diagnostic Sciences, Knoxville, Tennessee, United States
| | - Md. Jashim Uddin
- Vanderbilt University School of Medicine, Vanderbilt Institute of Chemical Biology, Center for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Nashville, Tennessee, United States
| | - Lawrence J. Marnett
- Vanderbilt University School of Medicine, Vanderbilt Institute of Chemical Biology, Center for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Nashville, Tennessee, United States
| |
Collapse
|
6
|
Thamm DH, Gustafson DL. Drug dose and drug choice: Optimizing medical therapy for veterinary cancer. Vet Comp Oncol 2019; 18:143-151. [PMID: 31487110 DOI: 10.1111/vco.12537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
Abstract
Although novel agents hold great promise for the treatment of animal neoplasia, there may be room for significant improvement in the use of currently available agents. These improvements include altered dosing schemes, novel combinations, and patient-specific dosing or selection of agents. Previous studies have identified surrogates for "individualized dose intensity,", for example, patient size, development of adverse effects, and pharmacokinetic parameters, as potential indicators of treatment efficacy in canine lymphoma, and strategies for patient-specific dose escalation are discussed. Strategies for treatment selection in individual patients include conventional histopathology, protein-based target assessment (eg, flow cytometry, immunohistochemistry, and mass spectrometry), and gene-based target assessment (gene expression profiling and targeted or global sequencing strategies). Currently available data in animal cancer evaluating these strategies are reviewed, as well as ongoing studies and suggestions for future directions.
Collapse
Affiliation(s)
- Douglas H Thamm
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado.,Developmental Therapeutics Program, University of Colorado Comprehensive Cancer Center, Fort Collins, Colorado
| | - Daniel L Gustafson
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado.,Developmental Therapeutics Program, University of Colorado Comprehensive Cancer Center, Fort Collins, Colorado
| |
Collapse
|
7
|
Grassinger JM, Merz S, Aupperle-Lellbach H, Erhard H, Klopfleisch R. Correlation of BRAF Variant V595E, Breed, Histological Grade and Cyclooxygenase-2 Expression in Canine Transitional Cell Carcinomas. Vet Sci 2019; 6:vetsci6010031. [PMID: 30893857 PMCID: PMC6466154 DOI: 10.3390/vetsci6010031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
The presence of BRAF variant V595E, as well as an increased cyclooxygenase-2 (COX-2) expression in canine transitional cell carcinoma (TCC) are well-described in the literature. The aim of the present study was to investigate the correlation between breed (terrier versus non-terrier dogs), histological grade, COX-2 expression, and BRAF mutation in canine TCC. Therefore, transmural TCC biopsies from 65 dogs (15 terriers, 50 non-terriers) were graded histologically into low- and high-grade. Immunohistochemical evaluation of the intensity of COX-2 expression was performed using an immunoreactive score (IRS). Exon 15 of chromosome 16 was examined for the BRAF variant c.1799T>A by TaqMan® SNP assay. TCC was low-grade in 20 cases (one terrier, 19 non-terriers) and high-grade in 45 cases (14 terriers, 31 non-terriers). Contrary to humans, histological grade was not significantly correlated to the intensity of COX-2 expression. BRAF mutation was detected in 11/15 (73%) TCC of terriers and in 18/50 (36%) TCC of non-terriers. Histological grade and BRAF mutation were not correlated significantly (p = 0.2912). Terriers had a considerably higher prevalence of high-grade tumors (p < 0.0001), as well as of BRAF mutation (p ≤ 0.05) compared to non-terriers. In non-terriers, neoplasms with BRAF mutation showed a significantly higher intensity of COX-2 expression than those without BRAF mutation (p ≤ 0.05). In conclusion, in contrast to humans, testing for BRAF mutation in canine TCC is a sensitive diagnostic method especially in terriers (73%) and may be recommended as a screening test. However, evidence of BRAF mutation in canine TCC is not a predictor for the histological grade. Moreover, a positive correlation between histological grade and the intensity of COX-2 expression was not found. Further studies are necessary to clarify the clinical and prognostic relevance of the elevated intensity of COX-2 expression of TCC with BRAF mutation detected in non-terriers.
Collapse
Affiliation(s)
| | - Sophie Merz
- Institute of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany.
| | | | - Hanna Erhard
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany.
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany.
| |
Collapse
|
8
|
Zhang R, Lu M, Zhang Z, Tian X, Wang S, Lv D. Resveratrol reverses P-glycoprotein-mediated multidrug resistance of U2OS/ADR cells by suppressing the activation of the NF-κB and p38 MAPK signaling pathways. Oncol Lett 2016; 12:4147-4154. [PMID: 27895784 PMCID: PMC5104249 DOI: 10.3892/ol.2016.5136] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to investigate the reversal effect of resveratrol on the phenomenon of multidrug resistance in U2OS/adriamycin (ADR) cells and to clarify the molecular mechanisms. To examine the cell survival and half-inhibitory concentration (IC50) of ADR in U2OS and U2OS/ADR cells, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used. The accumulation of ADR in U2OS and U2OS/ADR cells was investigated by flow cytometry. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to detect the expression of multidrug resistance protein 1 (MDR1), P-glycoprotein (P-gp), p65 and p38. Compared with U2OS cells, the IC50 value of ADR was significantly increased in U2OS/ADR cells, which exhibited high levels of MDR1/P-gp. However, resveratrol could drastically reduce the IC50 value of ADR and the expression of MDR1/P-gp, and increased the accumulation of ADR in U2OS/ADR cells. In addition, the expression levels of p38 (phosphorylated) and p65 (acetylated and total) in U2OS/ADR cells were also significantly suppressed by resveratrol. These results suggested that the nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK) signaling pathways are correlated with ADR-induced drug resistance in U2OS/ADR cells. Furthermore, resveratrol could downregulate the expression of MDR1/P-gp and reverse the drug resistance phenomenon in U2OS/ADR cells partly at least by suppressing the activation of the NF-κB and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ming Lu
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhen Zhang
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiliang Tian
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Shouyu Wang
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Decheng Lv
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
9
|
Mechanisms of Drug Resistance in Veterinary Oncology- A Review with an Emphasis on Canine Lymphoma. Vet Sci 2015; 2:150-184. [PMID: 29061939 PMCID: PMC5644636 DOI: 10.3390/vetsci2030150] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/22/2015] [Accepted: 08/04/2015] [Indexed: 01/09/2023] Open
Abstract
Drug resistance (DR) is the major limiting factor in the successful treatment of systemic neoplasia with cytotoxic chemotherapy. DR can be either intrinsic or acquired, and although the development and clinical implications are different, the underlying mechanisms are likely to be similar. Most causes for DR are pharmacodynamic in nature, result from adaptations within the tumor cell and include reduced drug uptake, increased drug efflux, changes in drug metabolism or drug target, increased capacity to repair drug-induced DNA damage or increased resistance to apoptosis. The role of active drug efflux transporters, and those of the ABC-transporter family in particular, have been studied extensively in human oncology and to a lesser extent in veterinary medicine. Methods reported to assess ABC-transporter status include detection of the actual protein (Western blot, immunohistochemistry), mRNA or ABC-transporter function. The three major ABC-transporters associated with DR in human oncology are ABCB1 or P-gp, ABCC1 or MRP1, and ABCG2 or BCRP, and have been demonstrated in canine cell lines, healthy dogs and dogs with cancer. Although this supports a causative role for these ABC-transporters in DR cytotoxic agents in the dog, the relative contribution to the clinical phenotype of DR in canine cancer remains an area of debate and requires further prospective studies.
Collapse
|
10
|
Liu Z, Duan ZJ, Chang JY, Zhang ZF, Chu R, Li YL, Dai KH, Mo GQ, Chang QY. Sinomenine sensitizes multidrug-resistant colon cancer cells (Caco-2) to doxorubicin by downregulation of MDR-1 expression. PLoS One 2014; 9:e98560. [PMID: 24901713 PMCID: PMC4047020 DOI: 10.1371/journal.pone.0098560] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/05/2014] [Indexed: 12/28/2022] Open
Abstract
Chemoresistance in multidrug-resistant (MDR) cells over expressing P-glycoprotein (P-gp) encoded by the MDR1 gene, is a major obstacle to successful chemotherapy for colorectal cancer. Previous studies have indicated that sinomenine can enhance the absorption of various P-gp substrates. In the present study, we investigated the effect of sinomenine on the chemoresistance in colon cancer cells and explored the underlying mechanism. We developed multidrug-resistant Caco-2 (MDR-Caco-2) cells by exposure of Caco-2 cells to increasing concentrations of doxorubicin. We identified overexpression of COX-2 and MDR-1 genes as well as activation of the NF-κB signal pathway in MDR-Caco-2 cells. Importantly, we found that sinomenine enhances the sensitivity of MDR-Caco-2 cells towards doxorubicin by downregulating MDR-1 and COX-2 expression through inhibition of the NF-κB signaling pathway. These findings provide a new potential strategy for the reversal of P-gp-mediated anticancer drug resistance.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhi-Jun Duan
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- * E-mail: (ZJD); (QYC)
| | - Jiu-Yang Chang
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhi-feng Zhang
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Rui Chu
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yu-Ling Li
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ke-Hang Dai
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guang-quan Mo
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qing-Yong Chang
- Department of Neurosurgery, Zhongshan Affiliated Hospital of Dalian University, Dalian, Liaoning, China
- * E-mail: (ZJD); (QYC)
| |
Collapse
|
11
|
Hanazono K, Nishimori T, Fukumoto S, Kawamura Y, Endo Y, Kadosawa T, Uchide T. Immunohistochemical expression of p63, Ki67 andβ-catenin in canine transitional cell carcinoma and polypoid cystitis of the urinary bladder. Vet Comp Oncol 2014; 14:263-9. [DOI: 10.1111/vco.12095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/28/2014] [Accepted: 03/31/2014] [Indexed: 12/13/2022]
Affiliation(s)
- K. Hanazono
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine; Rakuno Gakuen University; Hokkaido Japan
| | - T. Nishimori
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine; Rakuno Gakuen University; Hokkaido Japan
| | - S. Fukumoto
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine; Rakuno Gakuen University; Hokkaido Japan
| | - Y. Kawamura
- Department of Veterinary Pathology, School of Veterinary Medicine; Rakuno Gakuen University; Hokkaido Japan
| | - Y. Endo
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine; Rakuno Gakuen University; Hokkaido Japan
| | - T. Kadosawa
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine; Rakuno Gakuen University; Hokkaido Japan
| | - T. Uchide
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine; Rakuno Gakuen University; Hokkaido Japan
| |
Collapse
|
12
|
Shamshad H, Arayne MS, Sultana N. Spectroscopic characterization of in vitro interactions of cetirizine and NSAIDS. J Anal Sci Technol 2014. [DOI: 10.1186/s40543-014-0022-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
13
|
Sledge DG, Patrick DJ, Fitzgerald SD, Xie Y, Kiupel M. Differences in Expression of Uroplakin III, Cytokeratin 7, and Cyclooxygenase-2 in Canine Proliferative Urothelial Lesions of the Urinary Bladder. Vet Pathol 2014; 52:74-82. [DOI: 10.1177/0300985814522819] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The expression of immunohistochemical markers that have been used in diagnosis and/or prognostication of urothelial tumors in humans (uroplakin III [UPIII], cytokeratin 7 [CK7], cyclooxygenase-2 [COX-2], and activated caspase 3) was evaluated in a series of 99 canine proliferative urothelial lesions of the urinary bladder and compared to the lesion classification and grade as defined by the World Health Organization / International Society of Urologic Pathology consensus system. There were significant associations between tumor classification and overall UPIII pattern ( P = 1.49 × 10–18), loss of UPIII ( P = 1.27 × 10–4), overall CK7 pattern ( P = 4.34 × 10–18), and COX-2 pattern ( P = 8.12 × 10–25). In addition, there were significant associations between depth of neoplastic cell infiltration into the urinary bladder wall and overall UPIII pattern ( P = 1.54 × 10–14), loss of UPIII ( P = 2.07 × 10–4), overall CK7 pattern ( P = 1.17 × 10–13), loss of CK7 expression ( P = .0485), and COX-2 pattern ( P = 8.23 × 10–21). There were no significant associations between tumor classification or infiltration and caspase 3 expression pattern.
Collapse
Affiliation(s)
- D. G. Sledge
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | | | - S. D. Fitzgerald
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Y. Xie
- Pharmanet/i3, Haslett, MI, USA
| | - M. Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
14
|
Hanazono K, Fukumoto S, Endo Y, Ueno H, Kadosawa T, Uchide T. Ultrasonographic findings related to prognosis in canine transitional cell carcinoma. Vet Radiol Ultrasound 2014; 55:79-84. [PMID: 23890180 DOI: 10.1111/vru.12085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 06/09/2013] [Indexed: 01/04/2025] Open
Abstract
In human bladder cancer patients, ultrasonography is extensively used not only to identify tumor masses but also to evaluate tumor size, shape, echogenicity, location, and degree of tumor invasion into the bladder wall. The information revealed by ultrasonography delineates the tumor's biological features and facilitates prediction of prognosis. However, in veterinary medicine the feasibility of using ultrasonography for these purposes has not been fully investigated. In this retrospective study, we reviewed cases of dogs with histologically confirmed bladder mass lesions, including transitional cell carcinoma (n = 22) and polypoid cystitis (n = 5), to determine whether ultrasonography could reliably predict bladder wall involvement. By following patients with transitional cell carcinoma until death, we also determined whether ultrasonographic tumor size, shape, echogenicity, and mass location were related to prognosis. Wall involvement as revealed by ultrasound was significantly (P = 0.00005) associated with histological muscular layer involvement with a sensitivity of 93% (95% Confidence interval, 79-98%) and specificity of 92% (95% Confidence interval, 76-98%). Ultrasonographic wall involvement (P = 0.03, vs. noninvolvement), heterogeneous mass (P = 0.02, vs. homogeneous mass), and trigone location (P = 0.01, vs. other locations) characteristics were significantly associated with shorter survival times in transitional cell carcinoma cases. Findings indicated that ultrasonographic characteristics such as wall involvement, heterogeneous mass, and trigone location could be reliable prognostic indicators in canine transitional cell carcinoma.
Collapse
Affiliation(s)
- Kiwamu Hanazono
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido, 069-0851, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Cekanova M, Uddin MJ, Bartges JW, Callens A, Legendre AM, Rathore K, Wright L, Carter A, Marnett LJ. Molecular imaging of cyclooxygenase-2 in canine transitional cell carcinomas in vitro and in vivo. Cancer Prev Res (Phila) 2013; 6:466-76. [PMID: 23531445 DOI: 10.1158/1940-6207.capr-12-0358] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The enzyme COX-2 is induced at high levels in tumors but not in surrounding normal tissues, which makes it an attractive target for molecular imaging of cancer. We evaluated the ability of novel optical imaging agent, fluorocoxib A to detect urinary bladder canine transitional cell carcinomas (K9TCC). Here, we show that fluorocoxib A uptake overlapped with COX-2 expression in primary K9TCC cells in vitro. Using subcutaneously implanted primary K9TCC in athymic mice, we show specific uptake of fluorocoxib A by COX-2-expressing K9TCC xenograft tumors in vivo. Fluorocoxib A uptake by COX-2-expressing xenograft tumors was blocked by 70% (P < 0.005) when pretreated with the COX-2 selective inhibitor, celecoxib (10 mg/kg), 4 hours before intravenous administration of fluorocoxib A (1 mg/kg). Fluorocoxib A was taken up by COX-2-expressing tumors but not by COX-2-negative human UMUC-3 xenograft tumors. UMUC-3 xenograft tumors with no expression of COX-2 showed no uptake of fluorocoxib A. In addition, fluorocoxib A uptake was evaluated in five dogs diagnosed with TCC. Fluorocoxib A specifically detected COX-2-expressing K9TCC during cystoscopy in vivo but was not detected in normal urothelium. Taken together, our findings show that fluorocoxib A selectively bound to COX-2-expressing primary K9TCC cells in vitro, COX-2-expressing K9TCC xenografts tumors in nude mice, and heterogeneous canine TCC during cystoscopy in vivo. Spontaneous cancers in companion animals offer a unique translational model for evaluation of novel imaging and therapeutic agents using primary cancer cells in vitro and in heterogeneous cancers in vivo.
Collapse
Affiliation(s)
- Maria Cekanova
- Department of Small Animal Clinical Sciences, The University of Tennessee, College of Veterinary Medicine, 2407 River Drive A122, Knoxville, TN 37996, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kalalinia F, Elahian F, Hassani M, Kasaeeian J, Behravan J. Phorbol ester TPA modulates chemoresistance in the drug sensitive breast cancer cell line MCF-7 by inducing expression of drug efflux transporter ABCG2. Asian Pac J Cancer Prev 2013; 13:2979-84. [PMID: 22938493 DOI: 10.7314/apjcp.2012.13.6.2979] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Recent studies have indicated a link between levels of cyclooxygenase-2 (COX-2) and development of the multidrug resistance (MDR) phenotype. The ATP-binding cassette sub-family G member 2 (ABCG2) is a major MDR-related transporter protein that is frequently overexpressed in cancer patients. In this study, we aimed to evaluate any positive correlation between COX-2 and ABCG2 gene expression using the COX-2 inducer 12-O-tetradecanoylphorbol-13-acetate (TPA) in human breast cancer cell lines. ABCG2 mRNA and protein expression was studied using real-time RT-PCR and flow cytometry, respectively. A significant increase of COX-2 mRNA expression (up to 11-fold by 4 h) was induced by TPA in MDA-MB-231 cells, this induction effect being lower in MCF-7 cells. TPA caused a considerable increase up to 9-fold in ABCG2 mRNA expression in parental MCF-7 cells, while it caused a small enhancement in ABCG2 expression up to 67 % by 4 h followed by a time-dependent decrease in ABCG2 mRNA expression in MDA-MB-231 cells. TPA treatment resulted in a slight increase of ABCG2 protein expression in MCF-7 cells, while a time-dependent decrease in ABCG2 protein expression was occurred in MDA-MB-231 cells. In conclusion, based on the observed effects of TPA in MDA-Mb-231 cells, it is proposed that TPA up-regulates ABCG2 expression in the drug sensitive MCF-7 breast cancer cell line through COX-2 unrelated pathways.
Collapse
Affiliation(s)
- Fatemeh Kalalinia
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | | | | |
Collapse
|
17
|
Kim NH, Hwang YH, Im KS, Kim JH, Chon SK, Kim HY, Sur JH. P-glycoprotein expression in canine mammary gland tumours related with myoepithelial cells. Res Vet Sci 2012; 93:1346-52. [DOI: 10.1016/j.rvsc.2012.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 04/08/2012] [Indexed: 11/28/2022]
|
18
|
Cekanova M, Uddin MJ, Legendre AM, Galyon G, Bartges JW, Callens A, Martin-Jimenez T, Marnett LJ. Single-dose safety and pharmacokinetic evaluation of fluorocoxib A: pilot study of novel cyclooxygenase-2-targeted optical imaging agent in a canine model. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:116002. [PMID: 23117797 PMCID: PMC3484194 DOI: 10.1117/1.jbo.17.11.116002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We evaluated preclinical single-dose safety, pharmacokinetic properties, and specific uptake of the new optical imaging agent fluorocoxib A in dogs. Fluorocoxib A, N-[(5-carboxy-X-rhodaminyl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide, selectively binds and inhibits the cyclooxygenase-2 (COX-2) enzyme, which is overexpressed in many cancers. Safety pilot studies were performed in research dogs following intravenous (i.v.) administration of 0.1 and 1 mg/kg fluorocoxib A. Blood and urine samples collected three days after administration of each dose of fluorocoxib A revealed no evidence of toxicity, and no clinically relevant adverse events were noted on physical examination of exposed dogs over that time period. Pharmacokinetic parameters were assessed in additional research dogs from plasma collected at several time points after i.v. administration of fluorocoxib A using high-performance liquid chromatography analysis. The pharmacokinetic studies using 1 mg/kg showed a peak of fluorocoxib A (92±28 ng/ml) in plasma collected at 0.5 h. Tumor specific uptake of fluorocoxib A was demonstrated using a dog diagnosed with colorectal cancer expressing COX-2. Our data support the safe single-dose administration and in vivo efficacy of fluorocoxib A, suggesting a high potential for successful translation to clinical use as an imaging agent for improved tumor detection in humans.
Collapse
Affiliation(s)
- Maria Cekanova
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee 37996, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yan YX, Li WZ, Huang YQ, Liao WX. The COX-2 inhibitor Celecoxib enhances the sensitivity of KB/VCR oral cancer cell lines to Vincristine by down-regulating P-glycoprotein expression and function. Prostaglandins Other Lipid Mediat 2011; 97:29-35. [PMID: 21835258 DOI: 10.1016/j.prostaglandins.2011.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 07/26/2011] [Indexed: 01/16/2023]
Abstract
Previous studies have indicated that long-term chemotherapy decreases the sensitivity of oral cancer cells to chemotherapeutics while simultaneously increasing resistance to these drugs. COX-2 inhibitors are known to enhance the toxic action of anti-tumor drugs against cancer cells. Using the MTT method, we investigated the influence of the COX-2 selective inhibitor Celecoxib on the proliferation of KB/VCR oral cancer cell lines and analyzed the effect of Celecoxib on the regulation of P-glycoprotein (P-gp) expression and function. Western blot analysis was employed to detect the expression of P-gp, and flow cytometry was used to evaluate P-gp function by detecting the accumulation of the active P-gp functional fluorescence substrate within KB/VCR cells. The results revealed that a low dose of Celecoxib (10 μmol/L) showed no growth inhibitory effects on KB/VCR cell lines. When the concentration of Celecoxib was greater than or equal to 20 μmol/L, the inhibitory effect on KB/VCR cells was significantly enhanced in a time- and dose-dependent manner. The lower dose of Celecoxib (10 μmol/L) significantly enhanced the toxicity of Vincristine (VCR) against KB/VCR cell lines. After the application of Celecoxib plus VCR (10 μmol/L+1.5μmol/L, respectively) treatment for 24, 48 or 72 h, the growth inhibition rates of KB/KBV cells were 37.82 ± 1.60%, 47.84 ± 1.29% and 54.43 ± 2.35%, respectively, which were significantly higher than the rates in the cells treated only with Celecoxib (10 μmol/L) or VCR (1.5 μmol/L) (all P<0.01). P-gp expression levels in KB/KBV cells treated with Celecoxib plus VCR (10 μmol/L+1.5 μmol/L, respectively) were markedly lower than the levels in control cells and those treated with VCR (1.5 μmol/L) (all P<0.01). In addition, the intensity of Rho123 fluorescence of KB/KBV cells in cells treated with Celecoxib plus VCR (10 μmol/L+1.5 μmol/L, respectively) or Celecoxib alone (10 μmol/L) was significantly higher than the intensity observed in control cells and those treated with VCR alone (1.5 μmol/L) (all P<0.01). The underlying mechanism of these phenomena is likely correlated with the down-regulation of the expression and function of P-gp due to Celecoxib, thereby increasing the amount of VCR accumulated in KB/VCR cells.
Collapse
Affiliation(s)
- Yi Xuan Yan
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Road, Guangzhou 510515, China.
| | | | | | | |
Collapse
|
20
|
Chon E, McCartan L, Kubicek LN, Vail DM. Safety evaluation of combination toceranib phosphate (Palladia®) and piroxicam in tumour-bearing dogs (excluding mast cell tumours): a phase I dose-finding study. Vet Comp Oncol 2011; 10:184-93. [DOI: 10.1111/j.1476-5829.2011.00265.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Van der Heyden S, Chiers K, Vercauteren G, Daminet S, Wegge B, Paepe D, Ducatelle R. Expression of Multidrug Resistance-Associated P-Glycoprotein in Feline Tumours. J Comp Pathol 2011; 144:164-9. [DOI: 10.1016/j.jcpa.2010.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/07/2010] [Accepted: 08/12/2010] [Indexed: 11/27/2022]
|
22
|
Abstract
Cyclooxygenase (COX; also known as prostaglandin endoperoxide synthase) is a key enzyme in the biochemical pathway leading to the synthesis of prostaglandins. A large amount of epidemiological and experimental evidence supports a role for COX-2, the inducible form of the enzyme, in human tumorigenesis, notably in colorectal cancer. COX-2 mediates this role through the production of PGE(2) that acts to inhibit apoptosis, promote cell proliferation, stimulate angiogenesis, and decrease immunity. Similarly, COX-2 is believed to be involved in the oncogenesis of some cancers in domestic animals. Here, the author reviews the current knowledge on COX-2 expression and role in cancers of dogs, cats, and horses. Data indicate that COX-2 upregulation is present in many animal cancers, but there is presently not enough information to clearly define the prognostic significance of COX-2 expression. To date, only few reports document an association between COX-2 expression and survival, notably in canine mammary cancers and osteosarcomas. Some evidence suggests that COX inhibitors could be useful in the prevention and/or treatment of certain cancers in domestic animals, the best example being urinary transitional cell carcinomas in dogs. However, determination of the levels of COX-2 in a tumor does not appear to be a good prognostic factor or a good indicator for the response to nonsteroidal anti-inflammatory drug therapy. Clearly, additional research, including the development of in vitro cell systems, is needed to determine if COX-2 expression can be used as a reliable prognostic factor and as a definite therapeutic target in animal cancers.
Collapse
Affiliation(s)
- M Doré
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada.
| |
Collapse
|
23
|
Spencer ES, Minch J, Lahmers KK, Haldorson GJ, Mealey KL. Canine ABCB4: Tissue expression and cDNA structure. Res Vet Sci 2010; 89:65-71. [PMID: 20153493 DOI: 10.1016/j.rvsc.2010.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 12/22/2009] [Accepted: 01/19/2010] [Indexed: 01/12/2023]
Abstract
The ABCB gene subfamily of ABC (ATP-binding cassette) transporters is responsible for transporting a wide spectrum of molecules including peptides, iron, bile salts, drugs, and phospholipids. In humans, ABCB4 appears to be exclusively expressed on the apical membrane of hepatocytes where it translocates phosphatidylcholine from the inner to the outer leaflet of the canalicular membrane. Functional alterations in the ABCB4 transporter are associated with a number of cholestatic syndromes in humans. Because of its role in biliary lipid homeostasis in humans, investigation of the ABCB4 gene in dogs is warranted. Thus, the full cDNA sequence of canine ABCB4 was elucidated and its mRNA and protein expression levels in tissues were determined. Canine ABCB4 consists of 3804 nucleotides spanning 26 exons and is 89% identical to human ABCB4. Expression of ABCB4 in canine liver supports a potential role for the protein in normal biliary function similar to that in humans. The function of ABCB4 expressed in brain tissue has yet to be determined.
Collapse
Affiliation(s)
- Erick S Spencer
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6610, USA
| | | | | | | | | |
Collapse
|
24
|
MARTINEZ M, MODRIC S, SHARKEY M, TROUTMAN L, WALKER L, MEALEY K. The pharmacogenomics of P-glycoprotein and its role in veterinary medicine. J Vet Pharmacol Ther 2008; 31:285-300. [DOI: 10.1111/j.1365-2885.2008.00964.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|