1
|
Ekstrand K, Flanagan AJ, Lin IE, Vejseli B, Cole A, Lally AP, Morris RL, Morgan KN. Animal Transmission of SARS-CoV-2 and the Welfare of Animals during the COVID-19 Pandemic. Animals (Basel) 2021; 11:2044. [PMID: 34359172 PMCID: PMC8300090 DOI: 10.3390/ani11072044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
The accelerated pace of research into Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) necessitates periodic summaries of current research. The present paper reviews virus susceptibilities in species with frequent human contact, and factors that are best predictors of virus susceptibility. Species reviewed were those in contact with humans through entertainment, pet, or agricultural trades, and for whom reports (either anecdotal or published) exist regarding the SARS-CoV-2 virus and/or the resulting disease state COVID-19. Available literature was searched using an artificial intelligence (AI)-assisted engine, as well as via common databases, such as Web of Science and Medline. The present review focuses on susceptibility and transmissibility of SARS-CoV-2, and polymorphisms in transmembrane protease serine 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2) that contribute to species differences. Dogs and pigs appear to have low susceptibility, while ferrets, mink, some hamster species, cats, and nonhuman primates (particularly Old World species) have high susceptibility. Precautions may therefore be warranted in interactions with such species, and more selectivity practiced when choosing appropriate species to serve as models for research.
Collapse
Affiliation(s)
| | - Amanda J. Flanagan
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA;
| | - Ilyan E. Lin
- Department of Biology, Wheaton College, Norton, MA 02766, USA; (I.E.L.); (B.V.); (R.L.M.)
| | - Brendon Vejseli
- Department of Biology, Wheaton College, Norton, MA 02766, USA; (I.E.L.); (B.V.); (R.L.M.)
| | - Allicyn Cole
- Program in Neuroscience, Wheaton College, Norton, MA 02766, USA; (A.C.); (A.P.L.)
| | - Anna P. Lally
- Program in Neuroscience, Wheaton College, Norton, MA 02766, USA; (A.C.); (A.P.L.)
| | - Robert L. Morris
- Department of Biology, Wheaton College, Norton, MA 02766, USA; (I.E.L.); (B.V.); (R.L.M.)
| | - Kathleen N. Morgan
- Program in Neuroscience, Wheaton College, Norton, MA 02766, USA; (A.C.); (A.P.L.)
| |
Collapse
|
2
|
Shortening sow restraint period during lactation improves production and decreases hair cortisol concentrations in sows and their piglets. Animal 2021; 15:100082. [PMID: 33509702 DOI: 10.1016/j.animal.2020.100082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 11/22/2022] Open
Abstract
Food animal welfare is an issue of great concern, as society has a responsibility for animals under human care. Pork is the most consumed meat worldwide, with more than a billion pigs being slaughtered globally every year. Still, in most countries, sows are restrained in farrowing crates throughout lactation. In these crates, sows are confined with bars to an area that is just slightly larger than their body. Thus, moving and turning around, grooming, or expressing other natural behaviors are typically impossible. In this study, we utilized a simple and practical modification of conventional farrowing crates to designed farrowing pens, by removable confinement bars, which provide the flexibility to change the housing system from one to another. Our objective was to examine the parameters of production and hair cortisol concentrations after different restraint periods during lactation. Analyses included data from 77 sows and their 997 piglets. Sows were housed in farrowing crates, but the confinement bars were removed after different periods, from 3 days post-farrowing to full restraint. For certain analyses, sows were grouped into Short or Long Restraint groups (3-10 days vs 13-24 days, respectively). Multiple linear regression revealed that for any additional day in restraint of the sows, piglets' weaning rate decreases by 0.4% (P < 0.05). Moreover, the total number of weaned piglets per litter was higher in the Short Restraint group as compared to the Long Restraint group (10.4 ± 0.3 vs 9.7 ± 0.3, respectively; P < 0.05). Accordingly, total litter weight on the weaning day tended to be higher in the Short Restraint group (68.8 ± 2.2 vs 64.9 ± 1.8 kg; P = 0.1210). The requirement for medical treatments during lactation (e.g., antibiotics, NSAID) tended to be less frequent in the Short Restraint group (Sows: 21.9% vs 40%; P = 0.1219. Piglets: 2.4% vs 17.1%; P = 0.0609). Hair cortisol as a marker for chronic stress during lactation decreased when the restraint period was shortened in both sows and piglets. Our analysis revealed that sows' hair cortisol is a significant mediator between the restraint of the sow and its piglets' hair cortisol (Sobel test; P < 0.05). For every day of sows' restraint, sows' hair cortisol increased by 0.5 pg/mg, and for any additional unit of sows' hair cortisol, piglets' hair cortisol increased by 0.36 pg/mg. In conclusion, sustainable swine farming management can be beneficial for both animals and farmers; limiting sow restraint during lactation is expected to reduce stress, enhance welfare and production, and potentially improve the economics of swine operations.
Collapse
|
3
|
Ayuso M, Buyssens L, Stroe M, Valenzuela A, Allegaert K, Smits A, Annaert P, Mulder A, Carpentier S, Van Ginneken C, Van Cruchten S. The Neonatal and Juvenile Pig in Pediatric Drug Discovery and Development. Pharmaceutics 2020; 13:44. [PMID: 33396805 PMCID: PMC7823749 DOI: 10.3390/pharmaceutics13010044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacotherapy in pediatric patients is challenging in view of the maturation of organ systems and processes that affect pharmacokinetics and pharmacodynamics. Especially for the youngest age groups and for pediatric-only indications, neonatal and juvenile animal models can be useful to assess drug safety and to better understand the mechanisms of diseases or conditions. In this respect, the use of neonatal and juvenile pigs in the field of pediatric drug discovery and development is promising, although still limited at this point. This review summarizes the comparative postnatal development of pigs and humans and discusses the advantages of the juvenile pig in view of developmental pharmacology, pediatric diseases, drug discovery and drug safety testing. Furthermore, limitations and unexplored aspects of this large animal model are covered. At this point in time, the potential of the neonatal and juvenile pig as nonclinical safety models for pediatric drug development is underexplored.
Collapse
Affiliation(s)
- Miriam Ayuso
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Laura Buyssens
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Marina Stroe
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Allan Valenzuela
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Karel Allegaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (K.A.); (P.A.)
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Department of Hospital Pharmacy, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Neonatal Intensive Care Unit, University Hospitals UZ Leuven, 3000 Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (K.A.); (P.A.)
| | - Antonius Mulder
- Department of Neonatology, University Hospital Antwerp, 2650 Edegem, Belgium;
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Chris Van Ginneken
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| |
Collapse
|
4
|
Meng X, Ziadlou R, Grad S, Alini M, Wen C, Lai Y, Qin L, Zhao Y, Wang X. Animal Models of Osteochondral Defect for Testing Biomaterials. Biochem Res Int 2020; 2020:9659412. [PMID: 32082625 PMCID: PMC7007938 DOI: 10.1155/2020/9659412] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
The treatment of osteochondral defects (OCD) remains a great challenge in orthopaedics. Tissue engineering holds a good promise for regeneration of OCD. In the light of tissue engineering, it is critical to establish an appropriate animal model to evaluate the degradability, biocompatibility, and interaction of implanted biomaterials with host bone/cartilage tissues for OCD repair in vivo. Currently, model animals that are commonly deployed to create osteochondral lesions range from rats, rabbits, dogs, pigs, goats, and sheep horses to nonhuman primates. It is essential to understand the advantages and disadvantages of each animal model in terms of the accuracy and effectiveness of the experiment. Therefore, this review aims to introduce the common animal models of OCD for testing biomaterials and to discuss their applications in translational research. In addition, we have reviewed surgical protocols for establishing OCD models and biomaterials that promote osteochondral regeneration. For small animals, the non-load-bearing region such as the groove of femoral condyle is commonly chosen for testing degradation, biocompatibility, and interaction of implanted biomaterials with host tissues. For large animals, closer to clinical application, the load-bearing region (medial femoral condyle) is chosen for testing the durability and healing outcome of biomaterials. This review provides an important reference for selecting a suitable animal model for the development of new strategies for osteochondral regeneration.
Collapse
Affiliation(s)
- Xiangbo Meng
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Reihane Ziadlou
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yuxiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yanyan Zhao
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Dias IR, Viegas CA, Carvalho PP. Large Animal Models for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:441-501. [PMID: 29736586 DOI: 10.1007/978-3-319-76735-2_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Namely, in the last two decades, large animal models - small ruminants (sheep and goats), pigs, dogs and horses - have been used to study the physiopathology and to develop new therapeutic procedures to treat human clinical osteoarthritis. For that purpose, cartilage and/or osteochondral defects are generally performed in the stifle joint of selected large animal models at the condylar and trochlear femoral areas where spontaneous regeneration should be excluded. Experimental animal care and protection legislation and guideline documents of the US Food and Drug Administration, the American Society for Testing and Materials and the International Cartilage Repair Society should be followed, and also the specificities of the animal species used for these studies must be taken into account, such as the cartilage thickness of the selected defect localization, the defined cartilage critical size defect and the joint anatomy in view of the post-operative techniques to be performed to evaluate the chondral/osteochondral repair. In particular, in the articular cartilage regeneration and repair studies with animal models, the subchondral bone plate should always be taken into consideration. Pilot studies for chondral and osteochondral bone tissue engineering could apply short observational periods for evaluation of the cartilage regeneration up to 12 weeks post-operatively, but generally a 6- to 12-month follow-up period is used for these types of studies.
Collapse
Affiliation(s)
- Isabel R Dias
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal. .,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal. .,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Carlos A Viegas
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal.,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro P Carvalho
- Department of Veterinary Medicine, University School Vasco da Gama, Av. José R. Sousa Fernandes 197, Lordemão, Coimbra, 3020-210, Portugal.,CIVG - Vasco da Gama Research Center, University School Vasco da Gama, Coimbra, Portugal
| |
Collapse
|
6
|
Peralta JM, Rizzo V. The use of ice to enrich the environment of pigs housed indoors. J APPL ANIM WELF SCI 2014; 18:32-41. [PMID: 25105553 DOI: 10.1080/10888705.2014.938808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Pigs used in research are often housed in barren environments. The effects of ice as a simple enrichment tool for newly weaned pigs were investigated. Four replicates of 120 pigs were separated into 3 groups. One group was given free access to blocks of ice (ice group), another group had access to Classic Kong toys (Kong group), and a 3rd group did not receive any enrichment (control group). The behavior of each group was observed every 5 min from 08:00 hr to 12:00 hr during 4 consecutive days. Pigs were motivated to explore the ice blocks (4.85%±1.34) over the Classic Kong toys (2.03%±0.59). No differences in other behaviors were found between treatments. Ice is an effective and easy-to-replace enrichment device. Blocks of ice can be used as enrichment devices for pigs housed in research facilities.
Collapse
Affiliation(s)
- Jose M Peralta
- a College of Veterinary Medicine, Western University of Health Sciences
| | | |
Collapse
|