1
|
Ackermann I, Ulrich R, Tauscher K, Fatola OI, Keller M, Shawulu JC, Arnold M, Czub S, Groschup MH, Balkema-Buschmann A. Prion Infectivity and PrP BSE in the Peripheral and Central Nervous System of Cattle 8 Months Post Oral BSE Challenge. Int J Mol Sci 2021; 22:ijms222111310. [PMID: 34768738 PMCID: PMC8583047 DOI: 10.3390/ijms222111310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022] Open
Abstract
After oral exposure of cattle with classical bovine spongiform encephalopathy (C-BSE), the infectious agent ascends from the gut to the central nervous system (CNS) primarily via the autonomic nervous system. However, the timeline of this progression has thus far remained widely undetermined. Previous studies were focused on later time points after oral exposure of animals that were already 4 to 6 months old when challenged. In contrast, in this present study, we have orally inoculated 4 to 6 weeks old unweaned calves with high doses of BSE to identify any possible BSE infectivity and/or PrPBSE in peripheral nervous tissues during the first eight months post-inoculation (mpi). For the detection of BSE infectivity, we used a bovine PrP transgenic mouse bioassay, while PrPBSE depositions were analyzed by immunohistochemistry (IHC) and by protein misfolding cyclic amplification (PMCA). We were able to show that as early as 8 mpi the thoracic spinal cord as well as the parasympathetic nodal ganglion of these animals contained PrPBSE and BSE infectivity. This shows that the centripetal prion spread starts early after challenge at least in this age group, which represents an essential piece of information for the risk assessments for food, feed, and pharmaceutical products produced from young calves.
Collapse
Affiliation(s)
- Ivett Ackermann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany; (I.A.); (O.I.F.); (M.K.); (J.C.S.); (M.H.G.)
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Kerstin Tauscher
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany;
| | - Olanrewaju I. Fatola
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany; (I.A.); (O.I.F.); (M.K.); (J.C.S.); (M.H.G.)
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany; (I.A.); (O.I.F.); (M.K.); (J.C.S.); (M.H.G.)
| | - James C. Shawulu
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany; (I.A.); (O.I.F.); (M.K.); (J.C.S.); (M.H.G.)
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Abuja, Abuja 900105, Nigeria
| | - Mark Arnold
- Animal and Plant Health Agency Sutton Bonington, Sutton Bonington, Leicestershire LE12 5RB, UK;
| | - Stefanie Czub
- Canadian Food Inspection Agency, Lethbridge Laboratory, Lethbridge, AB T1J 3Z4, Canada;
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany; (I.A.); (O.I.F.); (M.K.); (J.C.S.); (M.H.G.)
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany; (I.A.); (O.I.F.); (M.K.); (J.C.S.); (M.H.G.)
- Correspondence:
| |
Collapse
|
2
|
Abstract
In sheep, scrapie is a fatal neurologic disease that is caused by a misfolded protein called a prion (designated PrPSc). The normal cellular prion protein (PrPC) is encoded by an endogenous gene, PRNP, that is present in high concentrations within the CNS. Although a broad range of functions has been described for PrPC, its entire range of functions has yet to be fully elucidated. Accumulation of PrPSc results in neurodegeneration. The PRNP gene has several naturally occurring polymorphisms, and there is a strong correlation between scrapie susceptibility and PRNP genotype. The cornerstone of scrapie eradication programs is the selection of scrapie-resistant genotypes to eliminate classical scrapie. Transmission of classical scrapie in sheep occurs during the prenatal and periparturient periods when lambs are highly susceptible. Initially, the scrapie agent is disseminated throughout the lymphoid system and into the CNS. Shedding of the scrapie agent occurs before the onset of clinical signs. In contrast to classical scrapie, atypical scrapie is believed to be a spontaneous disease that occurs in isolated instances in older animals within a flock. The agent that causes atypical scrapie is not considered to be naturally transmissible. Transmission of the scrapie agent to species other than sheep, including deer, has been experimentally demonstrated as has the transmission of nonscrapie prion agents to sheep. The purpose of this review is to outline the current methods for diagnosing scrapie in sheep and the techniques used for studying the pathogenesis and host range of the scrapie agent. Also discussed is the US scrapie eradication program including recent updates.
Collapse
|
3
|
Ferreira RS, da Silva DAF, Biscola NP, Sartori MMP, Denadai JC, Jorge AM, Dos Santos LD, Barraviera B. Traceability of animal protein byproducts in ruminants by multivariate analysis of isotope ratio mass spectrometry to prevent transmission of prion diseases. J Venom Anim Toxins Incl Trop Dis 2019; 25:e148718. [PMID: 31131007 PMCID: PMC6521725 DOI: 10.1590/1678-9199-jvatitd-1487-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022] Open
Abstract
Background Ruminant feed containing animal byproduct proteins (ABPs) is prohibited in many countries due to its risk of transmitting prion diseases (PD). In most cases the entire herd is sacrificed, which causes great harm to the producer countries by preventing their exportation of ruminant derived-products. Methods We used stable isotope ratio mass spectrometry (IRMS) of carbon (13C/12C) and nitrogen (15N/14N) to trace the animal protein in the blood of 15 buffaloes (Bubalus bubalis) divided into three experimental groups: 1 - received only vegetable protein (VP) during 117 days; 2 - received animal and vegetable protein (AVP); and 3 - received animal and vegetable protein with animal protein subsequently removed (AVPR). Groups 2 and 3 received diets containing 13.7% bovine meat and bone meal (MBM) added to a vegetable diet (from days 21-117 in the AVP group and until day 47 in the AVPR group, when MBM was removed). Results On the 36th day, differences were detectable in the feeding profile (p <0.01) among the three experimental groups, which remained for a further 49 days (85th day). The AVPR group showed isotopic rate reversibility on the 110th day by presenting values similar to those in the control group (VP) (p> 0.05), indicating that it took 63 days to eliminate MBM in this group. Total atoms exchange (> 95%) of 13C and 15N was observed through incorporation of the diet into the AVP and AVPR groups. Conclusions IRMS is an accurate and sensitive technique for tracing the feeding profile of ruminants through blood analysis, thus enabling investigation of ABP use.
Collapse
Affiliation(s)
- Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP - São Paulo State University, Botucatu, SP, Brazil.,Botucatu Medical School, UNESP - São Paulo State University, Botucatu, SP, Brazil
| | | | - Natália Perussi Biscola
- Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP - São Paulo State University, Botucatu, SP, Brazil.,Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Juliana Célia Denadai
- Stable Isotopes Center (CIE), UNESP - São Paulo State University, Botucatu, SP, Brazil
| | - André Mendes Jorge
- College of Veterinary Medicine and Animal Husbandry (FMVZ), UNESP - São Paulo State University, Botucatu, SP, Brazil
| | - Lucilene Delazari Dos Santos
- Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP - São Paulo State University, Botucatu, SP, Brazil.,Botucatu Medical School, UNESP - São Paulo State University, Botucatu, SP, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP - São Paulo State University, Botucatu, SP, Brazil.,Botucatu Medical School, UNESP - São Paulo State University, Botucatu, SP, Brazil
| |
Collapse
|
4
|
Ackermann I, Balkema-Buschmann A, Ulrich R, Tauscher K, Shawulu JC, Keller M, Fatola OI, Brown P, Groschup MH. Detection of PrP BSE and prion infectivity in the ileal Peyer's patch of young calves as early as 2 months after oral challenge with classical bovine spongiform encephalopathy. Vet Res 2017; 48:88. [PMID: 29258602 PMCID: PMC5738053 DOI: 10.1186/s13567-017-0495-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/01/2017] [Indexed: 11/28/2022] Open
Abstract
In classical bovine spongiform encephalopathy (C-BSE), an orally acquired prion disease of cattle, the ileal Peyer’s patch (IPP) represents the main entry port for the BSE agent. In earlier C-BSE pathogenesis studies, cattle at 4–6 months of age were orally challenged, while there are strong indications that the risk of infection is highest in young animals. In the present study, unweaned calves aged 4–6 weeks were orally challenged to determine the earliest time point at which newly formed PrPBSE and BSE infectivity are detectable in the IPP. For this purpose, calves were culled 1 week as well as 2, 4, 6 and 8 months post-infection (mpi) and IPPs were examined for BSE infectivity using a bovine PrP transgenic mouse bioassay, and for PrPBSE by immunohistochemistry (IHC) and protein misfolding cyclic amplification (PMCA) assays. For the first time, BSE prions were detected in the IPP as early as 2 mpi by transgenic mouse bioassay and PMCA and 4 mpi by IHC in the follicular dendritic cells (FDCs) of the IPP follicles. These data indicate that BSE prions propagate in the IPP of unweaned calves within 2 months of oral uptake of the agent.
Collapse
Affiliation(s)
- Ivett Ackermann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kerstin Tauscher
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - James C Shawulu
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Olanrewaju I Fatola
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Paul Brown
- National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
5
|
Detecting animal by-product intake using stable isotope ratio mass spectrometry (IRMS). Vet J 2016; 217:119-125. [PMID: 27810202 DOI: 10.1016/j.tvjl.2016.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023]
Abstract
Sheep are used in many countries as food and for manufacturing bioproducts. However, when these animals consume animal by-products (ABP), which is widely prohibited, there is a risk of transmitting scrapie - a fatal prion disease in human beings. Therefore, it is essential to develop sensitive methods to detect previous ABP intake to select safe animals for producing biopharmaceuticals. We used stable isotope ratio mass spectrometry (IRMS) for 13C and 15N to trace animal proteins in the serum of three groups of sheep: 1 - received only vegetable protein (VP) for 89 days; 2 - received animal and vegetable protein (AVP); and 3 - received animal and vegetable protein with animal protein subsequently removed (AVPR). Groups 2 and 3 received diets with 30% bovine meat and bone meal (MBM) added to a vegetable diet (from days 16-89 in the AVP group and until day 49 in the AVPR group, when MBM was removed). The AVPR group showed 15N equilibrium 5 days after MBM removal (54th day). Conversely, 15N equilibrium in the AVP group occurred 22 days later (76th day). The half-life differed between these groups by 3.55 days. In the AVPR group, 15N elimination required 53 days, which was similar to this isotope's incorporation time. Turnover was determined based on natural 15N signatures. IRMS followed by turnover calculations was used to evaluate the time period for the incorporation and elimination of animal protein in sheep serum. The δ13C and δ15N values were used to track animal protein in the diet. This method is biologically and economically relevant for the veterinary field because it can track protein over time or make a point assessment of animal feed with high sensitivity and resolution, providing a low-cost analysis coupled with fast detection. Isotopic profiles could be measured throughout the experimental period, demonstrating the potential to use the method for traceability and certification assessments.
Collapse
|
6
|
Close interactions between sympathetic neural fibres and follicular dendritic cells network are not altered in Peyer's patches and spleen of C57BL/6 mice during the preclinical stage of 139A scrapie infection. J Neuroimmunol 2014; 272:1-9. [PMID: 24841625 DOI: 10.1016/j.jneuroim.2014.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/31/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
Abstract
During preclinical stage of prion diseases, secondary lymphoid organs seem to play an important role in prion amplification prior the invasion of the associated peripheral nervous system. In mice, it was shown that the relative positioning of follicular dendritic cells (FDC) and sympathetic nervous system (SNS) affects the velocity of neuroinvasion following scrapie inoculation. In this study, we checked if scrapie infection, by oral or intraperitoneal route, could influence this neuroimmune interface between FDC and tyrosine hydroxylase (TH) positive neural fibres within Peyer's patches (PP) and spleen of the C57BL/6 mouse strain. We concluded that, in vivo, scrapie 139A and ME7 strains do not modify FDC-SNS neuroimmune interface. However, age seems to alter this neuroimmune interface and thus could influence the neuroinvasion in prion pathogenesis.
Collapse
|
7
|
Susceptibility of young sheep to oral infection with bovine spongiform encephalopathy decreases significantly after weaning. J Virol 2012; 86:11856-62. [PMID: 22915816 DOI: 10.1128/jvi.01573-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy (TSE) (or prion disease) that is readily transmissible to sheep by experimental infection and has the shortest incubation period in animals with the ARQ/ARQ PRNP genotype (at codons 136, 154, and 171). Because it is possible that sheep in the United Kingdom could have been infected with BSE by being fed contaminated meat and bone meal supplements at the same time as cattle, there is considerable interest in the responses of sheep to BSE inoculation. Epidemiological evidence suggests that very young individuals are more susceptible to TSE infection; however, this has never been properly tested in sheep. In the present study, low doses of BSE were fed to lambs of a range of ages (~24 h, 2 to 3 weeks, 3 months, and 6 months) and adult sheep. The incidence of clinical BSE disease after inoculation was high in unweaned lambs (~24 h and 2 to 3 weeks old) but much lower in older weaned animals The incubation period was also found to be influenced by the genotype at codon 141 of the PRNP gene, as lambs that were LF heterozygotes had a longer mean incubation period than those that were homozygotes of either type. The results suggest that sheep in the United Kingdom would have been at high risk of BSE infection only if neonatal animals had inadvertently ingested contaminated supplementary foodstuffs.
Collapse
|