1
|
Khan MZ, Wang J, Ma Y, Chen T, Ma M, Ullah Q, Khan IM, Khan A, Cao Z, Liu S. Genetic polymorphisms in immune- and inflammation-associated genes and their association with bovine mastitis resistance/susceptibility. Front Immunol 2023; 14:1082144. [PMID: 36911690 PMCID: PMC9997099 DOI: 10.3389/fimmu.2023.1082144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
Bovine mastitis, the inflammation of the mammary gland, is a contagious disease characterized by chemical and physical changes in milk and pathological changes in udder tissues. Depressed immunity and higher expression of inflammatory cytokines with an elevated milk somatic cell count can be observed during mastitis in dairy cattle. The use of somatic cell count (SCC) and somatic cell score (SCS) as correlated traits in the indirect selection of animals against mastitis resistance is in progress globally. Traditional breeding for mastitis resistance seems difficult because of the low heritability (0.10-0.16) of SCC/SCS and clinical mastitis. Thus, genetic-marker-selective breeding to improve host genetics has attracted considerable attention worldwide. Moreover, genomic selection has been found to be an effective and fast method of screening for dairy cattle that are genetically resistant and susceptible to mastitis at a very early age. The current review discusses and summarizes the candidate gene approach using polymorphisms in immune- and inflammation-linked genes (CD4, CD14, CD46, TRAPPC9, JAK2, Tf, Lf, TLRs, CXCL8, CXCR1, CXCR2, C4A, C5, MASP2, MBL1, MBL2, LBP, NCF1, NCF4, MASP2, A2M, and CLU, etc.) and their related signaling pathways (Staphylococcus aureus infection signaling, Toll-like receptor signaling, NF-kappa B signaling pathway, Cytokine-cytokine receptor, and Complement and coagulation cascades, etc.) associated with mastitis resistance and susceptibility phenotypic traits (IL-6, interferon-gamma (IFN-γ), IL17, IL8, SCS, and SCC) in dairy cattle.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mei Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Kułaj D, Pokorska J, Ochrem A, Dusza M, Makulska J. Effects of the c.8514C > T polymorphism in the osteopontin gene (OPN) on milk production, milk composition and disease susceptibility in Holstein-Friesian cattle. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2018.1547129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dominika Kułaj
- Zakład Hodowli Bydła, Uniwersytet Rolniczy w Krakowie, Krakow, Poland
| | - Joanna Pokorska
- Zakład Hodowli Bydła, Uniwersytet Rolniczy w Krakowie, Krakow, Poland
| | - Andrzej Ochrem
- Zakład Hodowli Bydła, Uniwersytet Rolniczy w Krakowie, Krakow, Poland
| | - Magdalena Dusza
- Zakład Hodowli Bydła, Uniwersytet Rolniczy w Krakowie, Krakow, Poland
| | - Joanna Makulska
- Zakład Hodowli Bydła, Uniwersytet Rolniczy w Krakowie, Krakow, Poland
| |
Collapse
|
3
|
Brito LF, Kijas JW, Ventura RV, Sargolzaei M, Porto-Neto LR, Cánovas A, Feng Z, Jafarikia M, Schenkel FS. Genetic diversity and signatures of selection in various goat breeds revealed by genome-wide SNP markers. BMC Genomics 2017; 18:229. [PMID: 28288562 PMCID: PMC5348779 DOI: 10.1186/s12864-017-3610-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/07/2017] [Indexed: 01/08/2023] Open
Abstract
Background The detection of signatures of selection has the potential to elucidate the identities of genes and mutations associated with phenotypic traits important for livestock species. It is also very relevant to investigate the levels of genetic diversity of a population, as genetic diversity represents the raw material essential for breeding and has practical implications for implementation of genomic selection. A total of 1151 animals from nine goat populations selected for different breeding goals and genotyped with the Illumina Goat 50K single nucleotide polymorphisms (SNP) Beadchip were included in this investigation. Results The proportion of polymorphic SNPs ranged from 0.902 (Nubian) to 0.995 (Rangeland). The overall mean HO and HE was 0.374 ± 0.021 and 0.369 ± 0.023, respectively. The average pairwise genetic distance (D) ranged from 0.263 (Toggenburg) to 0.323 (Rangeland). The overall average for the inbreeding measures FEH, FVR, FLEUT, FROH and FPED was 0.129, −0.012, −0.010, 0.038 and 0.030, respectively. Several regions located on 19 chromosomes were potentially under selection in at least one of the goat breeds. The genomic population tree constructed using all SNPs differentiated breeds based on selection purpose, while genomic population tree built using only SNPs in the most significant region showed a great differentiation between LaMancha and the other breeds. We hypothesized that this region is related to ear morphogenesis. Furthermore, we identified genes potentially related to reproduction traits, adult body mass, efficiency of food conversion, abdominal fat deposition, conformation traits, liver fat metabolism, milk fatty acids, somatic cells score, milk protein, thermo-tolerance and ear morphogenesis. Conclusions In general, moderate to high levels of genetic variability were observed for all the breeds and a characterization of runs of homozygosity gave insights into the breeds’ development history. The information reported here will be useful for the implementation of genomic selection and other genomic studies in goats. We also identified various genome regions under positive selection using smoothed FST and hapFLK statistics and suggested genes, which are potentially under selection. These results can now provide a foundation to formulate biological hypotheses related to selection processes in goats. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3610-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luiz F Brito
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada.
| | - James W Kijas
- CSIRO Agriculture & Food, Brisbane, Queensland, Australia
| | - Ricardo V Ventura
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada.,Beef Improvement Opportunities, Guelph, Ontario, Canada
| | - Mehdi Sargolzaei
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada.,The Semex Alliance, Guelph, Ontario, Canada
| | | | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| | - Zeny Feng
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada
| | - Mohsen Jafarikia
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada.,Canadian Centre for Swine Improvement Inc., Ottawa, Ontario, Canada
| | - Flávio S Schenkel
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Characterization and Comparative Analysis of the Milk Transcriptome in Two Dairy Sheep Breeds using RNA Sequencing. Sci Rep 2015; 5:18399. [PMID: 26677795 PMCID: PMC4683406 DOI: 10.1038/srep18399] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/17/2015] [Indexed: 11/08/2022] Open
Abstract
This study presents a dynamic characterization of the sheep milk transcriptome aiming at achieving a better understanding of the sheep lactating mammary gland. Transcriptome sequencing (RNA-seq) was performed on total RNA extracted from milk somatic cells from ewes on days 10, 50, 120 and 150 after lambing. The experiment was performed in Spanish Churra and Assaf breeds, which differ in their milk production traits. Nearly 67% of the annotated genes in the reference genome (Oar_v3.1) were expressed in ovine milk somatic cells. For the two breeds and across the four lactation stages studied, the most highly expressed genes encoded caseins and whey proteins. We detected 573 differentially expressed genes (DEGs) across lactation points, with the largest differences being found, between day 10 and day 150. Upregulated GO terms at late lactation stages were linked mainly to developmental processes linked to extracellular matrix remodeling. A total of 256 annotated DEGs were detected in the Assaf and Churra comparison. Some genes selectively upregulated in the Churra breed grouped under the endopeptidase and channel activity GO terms. These genes could be related to the higher cheese yield of this breed. Overall, this study provides the first integrated overview on sheep milk gene expression.
Collapse
|
5
|
Muhasin Asaf VN, Kumar A, Rahim A, Sebastian R, Mohan V, Dewangan P, Panigrahi M. An overview on single nucleotide polymorphism studies in mastitis research. Vet World 2014. [DOI: 10.14202/vetworld.2014.416-421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
6
|
Gutiérrez-Gil B, Arranz JJ, Pong-Wong R, García-Gámez E, Kijas J, Wiener P. Application of selection mapping to identify genomic regions associated with dairy production in sheep. PLoS One 2014; 9:e94623. [PMID: 24788864 PMCID: PMC4006912 DOI: 10.1371/journal.pone.0094623] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/19/2014] [Indexed: 11/18/2022] Open
Abstract
In Europe, especially in Mediterranean areas, the sheep has been traditionally exploited as a dual purpose species, with income from both meat and milk. Modernization of husbandry methods and the establishment of breeding schemes focused on milk production have led to the development of "dairy breeds." This study investigated selective sweeps specifically related to dairy production in sheep by searching for regions commonly identified in different European dairy breeds. With this aim, genotypes from 44,545 SNP markers covering the sheep autosomes were analysed in both European dairy and non-dairy sheep breeds using two approaches: (i) identification of genomic regions showing extreme genetic differentiation between each dairy breed and a closely related non-dairy breed, and (ii) identification of regions with reduced variation (heterozygosity) in the dairy breeds using two methods. Regions detected in at least two breeds (breed pairs) by the two approaches (genetic differentiation and at least one of the heterozygosity-based analyses) were labeled as core candidate convergence regions and further investigated for candidate genes. Following this approach six regions were detected. For some of them, strong candidate genes have been proposed (e.g. ABCG2, SPP1), whereas some other genes designated as candidates based on their association with sheep and cattle dairy traits (e.g. LALBA, DGAT1A) were not associated with a detectable sweep signal. Few of the identified regions were coincident with QTL previously reported in sheep, although many of them corresponded to orthologous regions in cattle where QTL for dairy traits have been identified. Due to the limited number of QTL studies reported in sheep compared with cattle, the results illustrate the potential value of selection mapping to identify genomic regions associated with dairy traits in sheep.
Collapse
Affiliation(s)
| | | | - Ricardo Pong-Wong
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, United Kingdom
| | | | - James Kijas
- Animal, Food and Health Sciences, CSIRO, Brisbane, Australia
| | - Pamela Wiener
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, United Kingdom
| |
Collapse
|