1
|
Mendoza FJ, Buzon-Cuevas A, Aguilera-Aguilera R, Gonzalez-De Cara CA, De Las Heras A, Perez-Ecija A. Hemodynamic Response to Lipopolysaccharide Infusion and Effect of Meloxicam Administration on Cardiac Function in Donkeys. Animals (Basel) 2024; 14:3660. [PMID: 39765564 PMCID: PMC11672460 DOI: 10.3390/ani14243660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/07/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Systemic inflammatory response syndrome (SIRS) in donkeys is observed to be secondary to colic, diarrhea or pleuropneumonia, among other disorders. Horses with SIRS develop secondary disturbances such as hyperlipemia, laminitis, disseminated intravascular coagulopathy, and hemodynamic and cardiac derangements, which impair their prognosis and increase the mortality rate. In donkeys, no information is available on the effect of experimentally induced endotoxemia in the cardiovascular system. Acute experimental endotoxemia was induced by lipopolysaccharide (LPS) infusion in six healthy adult non-pregnant jennies. Physical signs, arterial (systolic, diastolic and mean) and central venous pressure were monitored during 360 min. Cardiac troponin I (cTnI) concentrations were measured in blood samples, and echocardiography was performed. LPS infusion caused an increase in cTnI, hypotension and diminution of central venous pressure, cardiac dysfunction, with a decrease in stroke volume (SV), cardiac output (CO) and cardiac index, and impairment of ultrasonographic ventricular function parameters. Intravenous meloxicam administration prevented the cTnI increase, hypotension, diminution of SV and CO, and changes in ultrasonographic parameters related to ventricular dysfunction. Thus, meloxicam could be proposed as an effective therapeutical option to control the hemodynamic and cardiac derangements observed in donkeys with SIRS.
Collapse
Affiliation(s)
- Francisco J. Mendoza
- Department of Animal Medicine and Surgery, University of Cordoba, 14014 Cordoba, Spain (A.P.-E.)
| | - Antonio Buzon-Cuevas
- Department of Animal Medicine and Surgery, University of Cordoba, 14014 Cordoba, Spain (A.P.-E.)
| | | | | | - Adelaida De Las Heras
- Department of Animal Medicine and Surgery, University of Cordoba, 14014 Cordoba, Spain (A.P.-E.)
| | - Alejandro Perez-Ecija
- Department of Animal Medicine and Surgery, University of Cordoba, 14014 Cordoba, Spain (A.P.-E.)
| |
Collapse
|
2
|
Mercer MA, Davis JL, McKenzie HC, Messenger KM, Schaefer E, Council-Troche RM, Werre SR. Pharmacokinetics and efficacy of orally administered acetaminophen (paracetamol) in adult horses with experimentally induced endotoxemia. J Vet Intern Med 2023; 37:718-727. [PMID: 36840424 DOI: 10.1111/jvim.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Acetaminophen has been evaluated in horses for treatment of musculoskeletal pain but not as an antipyretic. OBJECTIVES To determine the pharmacokinetics and efficacy of acetaminophen compared to placebo and flunixin meglumine in adult horses with experimentally induced endotoxemia. ANIMALS Eight university owned research horses with experimentally induced endotoxemia. METHODS Randomized placebo controlled crossover study. Horses were treated with acetaminophen (30 mg/kg PO; APAP), flunixin meglumine (1.1 mg/kg, PO; FLU), and placebo (PO; PLAC) 2 hours after administration of LPS. Plasma APAP was analyzed via LC-MS/MS. Serial CBC, lactate, serum amyloid A, heart rate and rectal temperature were evaluated. Serum IL-1β, IL-6, IL-8, IL-10, and TNF-α were evaluated by an equine-specific multiplex assay. RESULTS Mean maximum plasma APAP concentration was 13.97 ± 2.74 μg/mL within 0.6 ± 0.3 hour after administration. At 4 and 6 hours after treatment, both APAP (P = <.001, P = .03, respectively) and FLU (P = .0045 and P < .001, respectively) had a significantly greater decrease in rectal temperature compared to placebo. FLU caused greater heart rate reduction than APAP at 4 and 6 hours (P = .004 and P = .04), and PLAC at 4 hours (P = .05) after treatment. CONCLUSIONS AND CLINICAL IMPORTANCE The pharmacokinetics of acetaminophen in endotoxemic horses differ from those reported by previous studies in healthy horses. Acetaminophen is an option for antipyresis in clinical cases, particularly when administration of traditional NSAIDs is contraindicated.
Collapse
Affiliation(s)
- Melissa A Mercer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Harold C McKenzie
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Kristen M Messenger
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Emily Schaefer
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - R McAlister Council-Troche
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Stephen R Werre
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Urayama S, Tanaka A, Kusano K, Sato H, Muranaka M, Mita H, Nagashima T, Matsuda H. Oral Administration of Meloxicam and Flunixin Meglumine Have Similar Analgesic Effects After Lipopolysaccharide-Induced Inflammatory Response in Thoroughbred Horses. J Equine Vet Sci 2023; 121:104205. [PMID: 36586521 DOI: 10.1016/j.jevs.2022.104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Flunixin meglumine (FM), a nonselective cyclooxygenase (COX) inhibitor, is most frequently selected for the treatment of equine systemic inflammatory response syndrome (SIRS)/endotoxemia. However, FM has considerable adverse effects on gastrointestinal function. The aims of this study were to compare the effect of meloxicam (MX), a COX-2 selective inhibitor commonly used in equine clinical practice, with FM, and to investigate the potential for clinical application in horses with SIRS/endotoxemia. Fifteen horses were divided into three groups of five and orally administered MX (0.6 mg/kg), FM (1.1 mg/kg), or saline as placebo at 30 minutes after LPS challenge. Clinical parameters, including behavioral pain scores, were recorded and blood for clinical pathological data was collected at various times from 60 minutes before to 420 minutes after LPS infusion. The pain score were significantly lower in both the MX and FM groups than in the placebo group, with no significant difference between them. Body temperature was significantly lower in the MX and FM groups than in the placebo group. Heart rates and respiratory rates, hoof wall surface temperature, and leukocyte counts changed similarly between the MX and FM groups. TNF-α and cortisol were lower in the FM group than in the MX group. The results suggest that MX suppresses the inflammatory response after LPS infusion and has an analgesic effect similar to that of FM. Given the adverse effects of nonselective COX inhibitors, clinical application of MX may be beneficial in horses with SIRS/endotoxemia.
Collapse
Affiliation(s)
- Shuntaro Urayama
- Racehorse Hospital, Ritto Training Center, Japan Racing Association (JRA), Ritto-Shi, Shiga, Japan.
| | - Akane Tanaka
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-Shi, Tokyo, Japan
| | - Kanichi Kusano
- Racehorse Hospital, Ritto Training Center, Japan Racing Association (JRA), Ritto-Shi, Shiga, Japan
| | - Hiroaki Sato
- Stewards Section, Ritto Training Center, JRA, Ritto-Shi, Shiga, Japan
| | - Masanori Muranaka
- Racehorse Hospital, Ritto Training Center, Japan Racing Association (JRA), Ritto-Shi, Shiga, Japan
| | - Hiroshi Mita
- Clinical Veterinary Medicine Division, Equine Research Institute, JRA, Simotsuke-Shi, Tochigi, Japan
| | - Tsuyoshi Nagashima
- Racehorse Hospital, Ritto Training Center, Japan Racing Association (JRA), Ritto-Shi, Shiga, Japan
| | - Hiroshi Matsuda
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-Shi, Tokyo, Japan
| |
Collapse
|
4
|
TLR4 and MD2 variation among horses with differential TNFα baseline concentrations and response to intravenous lipopolysaccharide infusion. Sci Rep 2023; 13:1486. [PMID: 36707633 PMCID: PMC9883502 DOI: 10.1038/s41598-023-27956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Gram-negative bacterial septicemia is mediated through binding of lipopolysaccharide (LPS) to mammalian toll-like receptor protein 4 (TLR4). TLR4 and its cognate protein, myeloid differentiation factor 2 (MD2) form a heterodimeric complex after binding LPS. This complex induces a cascade of reactions that results in increased proinflammatory cytokine gene expression, including TNFα, which leads to activation of innate immunity. In horses, the immune response to LPS varies widely. To determine if this variation is due to differences in TLR4 or MD2, DNA from 15 healthy adult horses with different TNFα dynamics after experimental intravenous LPS infusion was sequenced across exons of TLR4 and MD2. Haplotypes were constructed for both genes using all identified variants. Four haplotypes were observed for each gene. No significant associations were found between either TNFα baseline concentrations or response to LPS and haplotype; however, there was a significant association (P value = 0.0460) between the baseline TNFα concentration and one MD2 missense variant. Three-dimensional structures of the equine TLR4-MD2-LPS complex were built according to haplotype combinations observed in the study horses, and the implications of missense variants on LPS binding were modeled. Although the sample size was small, there was no evidence that variation in TLR4 or MD2 explains the variability in TNFα response observed after LPS exposure in horses.
Collapse
|
5
|
Chen CH, Guo BC, Hu PA, Lee HT, Hu HY, Hsu MC, Chen WH, Lee TS. Ractopamine at legal residue dosage accelerates atherosclerosis by inducing endothelial dysfunction and promoting macrophage foam cell formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120080. [PMID: 36057326 DOI: 10.1016/j.envpol.2022.120080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/08/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Ractopamine, a synthetic β-adrenoreceptor agonist, is used as an animal feed additive to increase food conversion efficiency and accelerate lean mass accretion in farmed animals. The U.S. Food and Drug Administration claimed that ingesting products containing ractopamine residues at legal dosages might not cause short-term harm to human health. However, the effect of ractopamine on chronic inflammatory diseases and atherosclerosis is unclear. Therefore, we investigated the effects of ractopamine on atherosclerosis and its action mechanism in apolipoprotein E-null (apoe-/-) mice and human endothelial cells (ECs) and macrophages. Daily treatment with ractopamine for four weeks increased the body weight and the weight of brown adipose tissues and gastrocnemius muscles. However, it decreased the weight of white adipose tissues in apoe-/- mice. Additionally, ractopamine exacerbated hyperlipidemia and systemic inflammation, deregulated aortic cholesterol metabolism and inflammation, and accelerated atherosclerosis. In ECs, ractopamine treatment induced endothelial dysfunction and increased monocyte adhesion and transmigration across ECs. In macrophages, ractopamine dysregulated cholesterol metabolism by increasing oxidized low-density lipoprotein (oxLDL) internalization and decreasing reverse cholesterol transporters, increasing oxLDL-induced lipid accumulation. Collectively, our findings revealed that ractopamine induces EC dysfunction and deregulated cholesterol metabolism of macrophages, which ultimately accelerates atherosclerosis progression.
Collapse
Affiliation(s)
- Chia-Hui Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bei-Chia Guo
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-An Hu
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Te Lee
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsuan-Yun Hu
- International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Man-Chen Hsu
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Hua Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
6
|
Witkowska-Piłaszewicz O, Pingwara R, Szczepaniak J, Winnicka A. The Effect of the Clenbuterol-β2-Adrenergic Receptor Agonist on the Peripheral Blood Mononuclear Cells Proliferation, Phenotype, Functions, and Reactive Oxygen Species Production in Race Horses In Vitro. Cells 2021; 10:cells10040936. [PMID: 33920705 PMCID: PMC8072563 DOI: 10.3390/cells10040936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Clenbuterol, the β2-adrenoceptor agonist, is gaining growing popularity because of its effects on weight loss (i.e., chemical liposuction). It is also popular in bodybuilding and professional sports, due to its effects that are similar to anabolic steroids. However, it is prohibited by anti-doping control. On the other hand, it is suggested that clenbuterol can inhibit the inflammatory process. The cells from 14 untrained and 14 well-trained race horses were collected after acute exercise and cultured with clenbuterol. The expressions of CD4, CD8, FoxP3, CD14, MHCII, and CD5 in PBMC, and reactive oxygen species (ROS) production, as well as cell proliferation, were evaluated by flow cytometry. In addition, IL-1β, IL-4, IL-6, IL-10, IL-17, INF-γ and TNF-α concentrations were evaluated by ELISA. β2-adrenoceptor stimulation leads to enhanced anti-inflammatory properties in well-trained horses, as do low doses in untrained animals. In contrast, higher clenbuterol doses create a pro-inflammatory environment in inexperienced horses. In conclusion, β2-adrenoceptor stimulation leads to a biphasic response. In addition, the immune cells are more sensitive to drug abuse in inexperienced individuals under physical training.
Collapse
Affiliation(s)
- Olga Witkowska-Piłaszewicz
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Science—SGGW, 02-787 Warsaw, Poland;
- Correspondence:
| | - Rafał Pingwara
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
| | - Jarosław Szczepaniak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
| | - Anna Winnicka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Science—SGGW, 02-787 Warsaw, Poland;
| |
Collapse
|
7
|
Gugliandolo E, Crupi R, Biondi V, Licata P, Cuzzocrea S, Passantino A. Protective Effect of Silibinin on Lipopolysaccharide-Induced Inflammatory Responses in Equine Peripheral Blood Mononuclear Cells, an In Vitro Study. Animals (Basel) 2020; 10:ani10112022. [PMID: 33153060 PMCID: PMC7692186 DOI: 10.3390/ani10112022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Natural compounds are often an important source of biologically active molecules, which can find important applications in the treatment or pharmacological prevention of several pathologies. Silibinin is a natural polyphenolic flavonoid that is extracted from plant milk thistle, Silybum marianum. Silibinin has been reported to have antioxidant and immunomodulatory and anti-inflammatory activities. In horses, in particular, inflammation secondary to bacterial infection or translocation is one of the most frequent causes of morbidity and mortality. The aim of this study was to test the effect of silibinin on lipopolysaccharide (LPS)-induced inflammatory response in equine peripheral blood mononuclear cells (PBMCs). Taken together, our results showed an interesting prospective in therapeutic use of silibinin in equine inflammatory disease. Furthermore, the results from this study support the evidence of use equine PBMCs as an in vitro model to study inflammatory and immune response and for drug screening into the target specie. Abstract Although inflammation is an important physiological response, it plays a prominent role in several diseases across the mammalian species. In horses, in particular, inflammation secondary to bacterial infection or translocation is one of the most frequent causes of morbidity and mortality. Research in new molecules with anti-inflammatory and immunomodulatory proprieties and safe use profile is constantly an active field; natural compounds are an important source of molecules with peculiar properties such as antioxidants, anti-inflammatory and immune modulating. Silibinin, a natural polyphenolic flavonoid, extracted from plant milk thistle, Silybum marianum, has been reported to have actions such as antioxidant immunomodulatory and anti-inflammatory. The aim of this study was to test the effect of silibinin on lipopolysaccharide (LPS)-induced inflammatory response in equine peripheral blood mononuclear cells (PBMCs). Our results showed the protective effect of silibinin 10 μM and 50 μM in equine PBMCs stimulated with LPS. Silibilinin was able to prevent the LPS induced increased levels of TNF-α, IL-1β, IL-6 and IL-8. The results from this study on LPS-stimulated equine PBMCs showed that silibinin could be a useful pharmacological approach in treatment or prevention of several inflammatory conditions in horse.
Collapse
Affiliation(s)
- Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy;
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy; (R.C.); (V.B.); (P.L.); (A.P.)
| | - Vito Biondi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy; (R.C.); (V.B.); (P.L.); (A.P.)
| | - Patrizia Licata
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy; (R.C.); (V.B.); (P.L.); (A.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy;
- Department of Pharmacological and Physiological Science, Saint Louis University, School of Medicine, 1402 South Grand Blvd, St Louis, MO 63104, USA
- Correspondence:
| | - Annamaria Passantino
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy; (R.C.); (V.B.); (P.L.); (A.P.)
| |
Collapse
|
8
|
Bauquier J, Tudor E, Bailey S. Effect of the p38 MAPK inhibitor doramapimod on the systemic inflammatory response to intravenous lipopolysaccharide in horses. J Vet Intern Med 2020; 34:2109-2116. [PMID: 32700419 PMCID: PMC7517855 DOI: 10.1111/jvim.15847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/02/2023] Open
Abstract
Background Doramapimod, a p38 MAPK inhibitor, is a potent anti‐inflammatory drug that decreases inflammatory cytokine production in equine whole blood in vitro. It may have benefits for treating systemic inflammation in horses. Objective To determine whether doramapimod is well tolerated when administered IV to horses, and whether it has anti‐inflammatory effects in horses in a low‐dose endotoxemia model. Animals Six Standardbred horses. Methods Tolerability study, followed by a blinded, randomized, placebo‐controlled cross‐over study. Horses were given doramapimod, and clinical and clinicopathological variables were monitored for 24 hours. Horses then were treated with doramapimod or placebo, followed by a low dose infusion of lipopolysaccharide (LPS). Clinical variables (heart rate, rectal temperature, noninvasive blood pressure), leukocyte count and tumor necrosis factor alpha (TNF‐α) and interleukin‐1 beta (IL‐1β) concentrations were measured at multiple time points until 6 hours post‐LPS infusion. Results No adverse effects or clinicopathological changes were seen in the safety study. When treated with doramapimod as compared to placebo, horses had significantly lower heart rates (P = .03), rectal temperatures (P = .03), and cytokine concentrations (P = .03 for TNF‐α and IL‐1β), and a significantly higher white blood cell count (P = .03) after LPS infusion. Conclusions and Clinical Importance Doramapimod has clinically relevant anti‐inflammatory effects in horses, likely mediated by a decrease in leukocyte activation and decrease in the release of pro‐inflammatory cytokines. To evaluate its potential as a novel treatment for systemic inflammatory response syndrome in horses, clinical trials will be necessary to determine its efficacy in naturally occurring disease.
Collapse
Affiliation(s)
- Jennifer Bauquier
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, Australia
| | - Elizabeth Tudor
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Australia
| | - Simon Bailey
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
9
|
Bauquier JR, Tennent-Brown BS, Tudor E, Bailey SR. Anti-inflammatory effects of a p38 MAP kinase inhibitor, doramapimod, against bacterial cell wall toxins in equine whole blood. Vet Immunol Immunopathol 2019; 220:109994. [PMID: 31877483 DOI: 10.1016/j.vetimm.2019.109994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 01/10/2023]
Abstract
Doramapimod (BIRB-796-BS), is an anti-inflammatory compound, acting through p38 MAPK inhibition, but its anti-inflammatory effects have not previously been studied in the horse. Whole blood aliquots from healthy horses diluted 1:1 with cell culture medium were incubated for 21 h with 1 μg/ml of lipopolysaccharide (LPS), lipoteichoic acid (LTA) or peptidoglycan (PGN) in the presence of increasing concentrations of doramapimod (3 × 10-8 M to 10-5 M). Cell bioassays were used to measure TNF-α and IL-1β activity. Doramapimod significantly and potently inhibited TNF-α and IL-1β activity induced by all three bacterial toxins. There was no significant difference in IC50 or maximum inhibition of TNF-α or IL-1β production between any of the toxins. Maximum inhibition of IL-1β was higher than that of TNF-α for all toxins, and this difference was significant for LPS (P = 0.04). Doramapimod was a potent inhibitor of TNF-α and IL-1β for inflammation induced by LPS, LTA and PGN, with potency much greater than that of other drugs previously tested using similar methods.
Collapse
Affiliation(s)
- Jennifer R Bauquier
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Australia.
| | - Brett S Tennent-Brown
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Australia
| | - Elizabeth Tudor
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Australia
| | - Simon R Bailey
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Australia
| |
Collapse
|
10
|
Urayama S, Tanaka A, Kusano K, Sato H, Nagashima T, Fukuda I, Fujisawa C, Matsuda H. Oral Administration of Meloxicam Suppresses Low-Dose Endotoxin Challenge-Induced Pain in Thoroughbred Horses. J Equine Vet Sci 2019; 77:139-143. [PMID: 31133308 DOI: 10.1016/j.jevs.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/04/2023]
Abstract
Nonsteroidal anti-inflammatory drugs such as flunixin meglumine have been used to treat signs of systemic inflammatory conditions, but it is also known to have the side effect to small intestine mucosa. It may be considered to be due to inhibition of both cyclooxygenase (COX)-1 and COX-2. On the other hand, meloxicam is widely used in equine clinical practice and an effective nonsteroidal anti-inflammatory drug with the preferential inhibitory effect on COX-2. However, it has not yet been evaluated in equine systemic inflammation. The aim of this study was to evaluate the effect of meloxicam administered 60 minutes prior lipopolysaccharide (LPS)-induced inflammatory response in five Thoroughbred horses using a crossover test. Clinical parameters including body temperature, heart rate, respiratory rate, behavioral pain score, and hoof wall surface temperature were recorded, and plasma tumor necrosis factor-alpha, cortisol, and leukocyte counts were measured at various times before and after LPS infusion for 420 minutes. At time points 60, 90 (P < .01), 120, and 180 (P < .05) minutes, pain scores were significantly lower in meloxicam-treated horses. There was no significant difference in other parameters. In the present study, we revealed the analgesic effect of meloxicam using an equine low-dose endotoxin model.
Collapse
Affiliation(s)
- Shuntaro Urayama
- Racehorse Hospital, Miho Training Center, Japan Racing Association, Ibaraki, Japan.
| | - Akane Tanaka
- Division of Animal Life Science, Laboratory of Comparative Animal Medicine, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kanichi Kusano
- Racehorse Hospital, Miho Training Center, Japan Racing Association, Ibaraki, Japan
| | - Hiroaki Sato
- Racehorse Hospital, Miho Training Center, Japan Racing Association, Ibaraki, Japan
| | - Tsuyoshi Nagashima
- Racehorse Hospital, Miho Training Center, Japan Racing Association, Ibaraki, Japan
| | - Ippei Fukuda
- Racehorse Hospital, Miho Training Center, Japan Racing Association, Ibaraki, Japan
| | - Chihiro Fujisawa
- Racehorse Hospital, Miho Training Center, Japan Racing Association, Ibaraki, Japan
| | - Hiroshi Matsuda
- Division of Animal Life Science, Laboratory of Veterinary Molecular Pathology and Therapeutics, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
11
|
Sheats MK. A Comparative Review of Equine SIRS, Sepsis, and Neutrophils. Front Vet Sci 2019; 6:69. [PMID: 30931316 PMCID: PMC6424004 DOI: 10.3389/fvets.2019.00069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
The most recent definition of sepsis in human medicine can be summarized as organ dysfunction caused by a dysregulated host response to infection. In equine medicine, although no consensus definition is available, sepsis is commonly described as a dysregulated host systemic inflammatory response to infection. Defense against host infection is the primary role of innate immune cells known as neutrophils. Neutrophils also contribute to host injury during sepsis, making them important potential targets for sepsis prevention, diagnosis, and treatment. This review will present both historical and updated perspectives on the systemic inflammatory response (SIRS) and sepsis; it will also discuss the impact of sepsis on neutrophils, and the impact of neutrophils during sepsis. Future identification of clinically relevant sepsis diagnosis and therapy depends on a more thorough understanding of disease pathogenesis across species. To gain this understanding, there is a critical need for research that utilizes a clearly defined, and consistently applied, classification system for patients diagnosed with, and at risk of developing, sepsis.
Collapse
Affiliation(s)
- M. Katie Sheats
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, United States
| |
Collapse
|
12
|
Rütten S, Schrödl W, Abraham G. Modulation of TNF-α, IL-1Ra and IFN-γ in equine whole blood culture by glucocorticoids. Vet Immunol Immunopathol 2019; 210:1-5. [PMID: 30947974 DOI: 10.1016/j.vetimm.2019.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 11/30/2022]
Abstract
Glucocorticoids are important drugs in the treatment of many inflammatory, autoimmune and allergic diseases in humans and animals. We investigated the effects of hydrocortisone and dexamethasone on TNF-α, IL-1Ra and INF-γ release in stimulated whole blood cell culture from healthy horses. Whole blood cell cultures proved to be useful for the characterization of the anti-inflammatory properties of new drugs. Diluted equine whole blood was exposed to lipopolysaccharide (LPS) and PCPwL (a cocktail consisting of phythemagglutinin E, concanavalin A, pokeweed mitogen and lipopolysaccharide) in the presence or absence of hydrocortisone and dexamethasone (10-12 - 10-5 M). TNF-α and IL-1Ra (LPS) as well as IFN-γ (PCPwL) levels were measured in the supernatants using specific enzyme-linked immunosorbent assay (ELISA). The LPS-induced TNF-α and IL-1Ra as well as the PCPwL-induced IFN-γ levels were more potently suppressed by dexamethasone than by hydrocortisone in a concentration-dependent manner. Dexamethasone inhibited TNF-α, IL-1Ra and IFN-γ with the half maximal inhibition concentration (IC50) values of 0.09 μM, 0.453 μM and 0.001 μM, respectively, whereas hydrocortisone inhibited these cytokines with lower IC50 values of 1.45 μM, 2.96 μM and 0.09 μM, respectively. Our results suggest that the equine whole blood test system is useful and reliable to evaluate drug effects and immunological alterations and offers several advantages including simple and cheap performance in physiological and pathological conditions.
Collapse
Affiliation(s)
- Simon Rütten
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Wieland Schrödl
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, An den Tierkliniken 15, 04103 Leipzig, Germany; Institute of Bacteriology und Mycology, University of Leipzig, 04103 Leipzig, Germany
| | - Getu Abraham
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, An den Tierkliniken 15, 04103 Leipzig, Germany.
| |
Collapse
|
13
|
Talib NAA, Salam F, Yusof NA, Alang Ahmad SA, Azid MZ, Mirad R, Sulaiman Y. Enhancing a clenbuterol immunosensor based on poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotube performance using response surface methodology. RSC Adv 2018; 8:15522-15532. [PMID: 35559117 PMCID: PMC9088606 DOI: 10.1039/c8ra00109j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/08/2018] [Indexed: 11/21/2022] Open
Abstract
Clenbuterol (CLB) is an illegal antibiotic for livestock, which is misused as a growth promoter drug. In this study, an immunosensor modified with poly(3,4-ethylenedioxythiophene) (PEDOT), multi-walled carbon nanotubes (MWCNT) and anti-clenbuterol antibody (Ab) was developed for the detection of CLB. A screen-printed carbon electrode (SPCE) was modified with PEDOT/MWCNT as a sensor platform before immobilizing Ab for specific CLB binding through a competitive-type immunoassay. Free CLB in the sample solution competed with clenbuterol-horseradish peroxide (CLB-HRP) to bind with Ab. A high current signal was obtained after optimization of the electrochemical immunoassay conditions (pH, incubation temperature, antigen (Ag) incubation time and % blocking) using the response surface methodology/central composite design (RSM/CCD). The developed immunosensor is highly reproducible and sensitive with good storage stability, which are necessary for practical application. In real sample application, this immunosensor produces comparable results with liquid chromatography-mass spectrometry; thus, it is useful for CLB screening and monitoring in real meat samples.
Collapse
Affiliation(s)
- Nurul Ain A Talib
- Functional Devices Laboratory, Institute of Advance Technology, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia +60-389435380 +60-389466779
| | - Faridah Salam
- Biodiagnostic-Biosensor Programme, Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute 43400 Serdang Selangor Malaysia
| | - Nor Azah Yusof
- Functional Devices Laboratory, Institute of Advance Technology, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia +60-389435380 +60-389466779
| | - Shahrul Ainliah Alang Ahmad
- Functional Devices Laboratory, Institute of Advance Technology, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia +60-389435380 +60-389466779
| | - Mohd Zulkhairi Azid
- Utilization of Agrobiodiversity Resource Programme, Agrobiodiversity and Environmental Research Centre, Malaysian Agricultural Research and Development Institute 43400 Serdang Selangor Malaysia
| | - Razali Mirad
- Utilization of Agrobiodiversity Resource Programme, Agrobiodiversity and Environmental Research Centre, Malaysian Agricultural Research and Development Institute 43400 Serdang Selangor Malaysia
| | - Yusran Sulaiman
- Functional Devices Laboratory, Institute of Advance Technology, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia +60-389435380 +60-389466779
| |
Collapse
|
14
|
Sato H, Matsuda K, Amagai Y, Tanaka A, Matsuda H. Suppressive Effect of Bortezomib on LPS-Induced Inflammatory Responses in Horses. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2017.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Martin EM, Messenger KM, Sheats MK, Jones SL. Misoprostol Inhibits Lipopolysaccharide-Induced Pro-inflammatory Cytokine Production by Equine Leukocytes. Front Vet Sci 2017; 4:160. [PMID: 29034249 PMCID: PMC5624997 DOI: 10.3389/fvets.2017.00160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023] Open
Abstract
Pro-inflammatory cytokines including tumor necrosis factor α (TNFα), IL-1β, IL-6, and IL-8 are potent immune mediators that exacerbate multiple equine diseases such as sepsis and laminitis. Unfortunately, safe and effective cytokine-targeting therapies are lacking in horses; therefore, novel mechanisms of inhibiting cytokine production are critically needed. One potential mechanism for inhibiting cytokine synthesis is elevation of intracellular cyclic AMP (cAMP). In human leukocytes, intracellular cAMP production is induced by activation of E-prostanoid (EP) receptors 2 and 4. These receptors can be targeted by the EP2/4 agonist and prostaglandin E1 analog, misoprostol. Misoprostol is currently used as a gastroprotectant in horses but has not been evaluated as a cytokine-targeting therapeutic. Thus, we hypothesized that misoprostol treatment would inhibit pro-inflammatory cytokine production by lipopolysaccharide (LPS)-stimulated equine leukocytes in an in vitro inflammation model. To test this hypothesis, equine leukocyte-rich plasma (LRP) was collected from 12 healthy adult horses and used to model LPS-mediated inflammatory signaling. LRP was treated with varying concentrations of misoprostol either before (pretreated) or following (posttreated) LPS stimulation. LRP supernatants were assayed for 23 cytokines using an equine-specific multiplex bead immunoassay. Leukocytes were isolated from LRP, and leukocyte mRNA levels of four important cytokines were evaluated via RT-PCR. Statistical differences between treatments were determined using one-way RM ANOVA (Holm-Sidak post hoc testing) or Friedman's RM ANOVA on Ranks (SNK post hoc testing), where appropriate (p < 0.05, n = 3-6 horses). These studies revealed that misoprostol pre- and posttreatment inhibited LPS-induced TNFα and IL-6 protein production in equine leukocytes but had no effect on IL-8 protein. Interestingly, misoprostol pretreatment enhanced IL-1β protein synthesis following 6 h of LPS stimulation, while misoprostol posttreatment inhibited IL-1β protein production after 24 h of LPS stimulation. At the mRNA level, misoprostol pre- and posttreatment inhibited LPS-induced TNFα, IL-1β, and IL-6 mRNA production but did not affect IL-8 mRNA. These results indicate that misoprostol exerts anti-inflammatory effects on equine leukocytes when applied before or after a pro-inflammatory stimulus. However, the effects we observed were cytokine-specific and sometimes differed at the mRNA and protein levels. Further studies are warranted to establish the inhibitory effects of misoprostol on equine cytokine production in vivo.
Collapse
Affiliation(s)
- Emily Medlin Martin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Kristen M. Messenger
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Mary Katherine Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Samuel L. Jones
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
16
|
Bauquier JR, Tennent-Brown BS, Tudor E, Bailey SR. Effects of polymyxin-B on TNF-α production in equine whole blood stimulated with three different bacterial toxins. J Vet Pharmacol Ther 2017; 41:e35-e39. [DOI: 10.1111/jvp.12445] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022]
Affiliation(s)
- J. R. Bauquier
- Faculty of Veterinary and Agricultural Sciences; Department of Veterinary Clinical Sciences; Melbourne Veterinary School; University of Melbourne; Werribee Vic. Australia
| | - B. S. Tennent-Brown
- Faculty of Veterinary and Agricultural Sciences; Department of Veterinary Clinical Sciences; Melbourne Veterinary School; University of Melbourne; Werribee Vic. Australia
| | - E. Tudor
- Faculty of Veterinary and Agricultural Sciences; Department of Veterinary Biosciences; Melbourne Veterinary School; University of Melbourne; Parkville Vic. Australia
| | - S. R. Bailey
- Faculty of Veterinary and Agricultural Sciences; Department of Veterinary Biosciences; Melbourne Veterinary School; University of Melbourne; Parkville Vic. Australia
| |
Collapse
|
17
|
Werners AH. Treatment of endotoxaemia and septicaemia in the equine patient. J Vet Pharmacol Ther 2016; 40:1-15. [PMID: 27452161 DOI: 10.1111/jvp.12329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/02/2016] [Indexed: 12/27/2022]
Abstract
Endotoxins, constituents of the cell wall of gram-positive and gram-negative bacteria, regularly result in severe illness and death in horses. In endotoxaemia, these constituents are present in the systemic circulation; in septicaemia, whole microbes invade normally sterile parts of the body. Interaction of these endotoxins with pathogen recognition receptors leads to an inflammatory response that cannot always be sufficiently contained and hence needs direct treatment. Over the last decennia, our understanding of the pathophysiology of endotoxaemia and septicaemia has significantly increased. Based on improved understanding of the interaction between receptors and endotoxins as well as the subsequent downstream signalling pathways, new therapeutic targets have been identified in laboratory animal species and humans. Important species differences in the recognition of endotoxins and pathogens by their receptors as well as the inflammatory response to receptor activation hamper extrapolation of this information to the horse (and other species). Historically, horses with endotoxaemia and septicaemia have been treated mainly symptomatically and supportively. Based on the identified therapeutic targets, this review describes the current knowledge of the treatment for endotoxaemia and septicaemia in the horse with reference to the findings in other animal species and humans.
Collapse
Affiliation(s)
- A H Werners
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, True Blue Campus, St. George's, Grenada, West-Indies
| |
Collapse
|
18
|
Rütten S, Schusser GF, Abraham G, Schrödl W. Release kinetics of tumor necrosis factor-α and interleukin-1 receptor antagonist in the equine whole blood. BMC Vet Res 2016; 12:117. [PMID: 27316332 PMCID: PMC4912716 DOI: 10.1186/s12917-016-0742-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 06/09/2016] [Indexed: 11/24/2022] Open
Abstract
Background Horses are much predisposed and susceptible to excessive and acute inflammatory responses that cause the recruitment and stimulation of polymorphnuclear granulocytes (PMN) together with peripheral blood mononuclear cells (PBMC) and the release of cytokines. The aim of the study is to develop easy, quick, cheap and reproducible methods for measuring tumor necrosis factor alpha (TNF-α) and interleukin-1 receptor antagonist (IL-1Ra) in the equine whole blood cultures ex-vivo time- and concentration-dependently. Results Horse whole blood diluted to 10, 20 and 50 % was stimulated with lipopolysaccharide (LPS), PCPwL (a combination of phytohemagglutinin E, concanavalin A and pokeweed mitogen) or equine recombinant TNF-α (erTNF-α). TNF-α and IL-1Ra were analyzed in culture supernatants, which were collected at different time points using specific enzyme-linked immunosorbent assays (ELISA). Both cytokines could be detected optimal in stimulated 20 % whole blood cultures. TNF-α and IL-1Ra releases were time-dependent but the kinetic was different between them. PCPwL-induced TNF-α and IL-1Ra release was enhanced continuously over 24–48 h, respectively. Similarly, LPS-stimulated TNF-α was at maximum at time points between 8–12 h and started to decrease thereafter, whereas IL-1Ra peaked later between 12–24 h and rather continued to accumulate over 48 h. The equine recombinant TNF-α could induce also the IL-1Ra release. Conclusions Our results demonstrate that similar to PCPwL, LPS stimulated TNF-α and IL-1Ra production time-dependently in whole blood cultures, suggesting the suitability of whole blood cultures to assess the release of a variety of cytokines in health and diseases of horse.
Collapse
Affiliation(s)
- Simon Rütten
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103, Leipzig, Germany
| | - Gerald F Schusser
- Department of Large Animal Medicine, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 11, 04103, Leipzig, Germany
| | - Getu Abraham
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103, Leipzig, Germany.
| | - Wieland Schrödl
- Institute of Bacteriology and Mycology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, 04103, Leipzig, Germany
| |
Collapse
|
19
|
Chu LH, Annex BH, Popel AS. Computational drug repositioning for peripheral arterial disease: prediction of anti-inflammatory and pro-angiogenic therapeutics. Front Pharmacol 2015; 6:179. [PMID: 26379552 PMCID: PMC4548203 DOI: 10.3389/fphar.2015.00179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022] Open
Abstract
Peripheral arterial disease (PAD) results from atherosclerosis that leads to blocked arteries and reduced blood flow, most commonly in the arteries of the legs. PAD clinical trials to induce angiogenesis to improve blood flow conducted in the last decade have not succeeded. We have recently constructed PADPIN, protein-protein interaction network (PIN) of PAD, and here we combine it with the drug-target relations to identify potential drug targets for PAD. Specifically, the proteins in the PADPIN were classified as belonging to the angiome, immunome, and arteriome, characterizing the processes of angiogenesis, immune response/inflammation, and arteriogenesis, respectively. Using the network-based approach we predict the candidate drugs for repositioning that have potential applications to PAD. By compiling the drug information in two drug databases DrugBank and PharmGKB, we predict FDA-approved drugs whose targets are the proteins annotated as anti-angiogenic and pro-inflammatory, respectively. Examples of pro-angiogenic drugs are carvedilol and urokinase. Examples of anti-inflammatory drugs are ACE inhibitors and maraviroc. This is the first computational drug repositioning study for PAD.
Collapse
Affiliation(s)
- Liang-Hui Chu
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Brian H Annex
- Division of Cardiovascular Medicine, Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine Charlottesville, VA, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
20
|
Nolen-Walston RD, Moore CM, Barr CA, Tomlinson JE, Boston RC, Soma LR. Effect of long-term oral administration of a low dosage of clenbuterol on body fat percentage in working and nonworking adult horses. Am J Vet Res 2015; 76:460-6. [PMID: 25909379 DOI: 10.2460/ajvr.76.5.460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To determine the anabolic and lipolytic effects of a low dosage of clenbuterol administered orally in working and nonworking equids. ANIMALS 8 nonworking horses and 47 polo ponies in active training. PROCEDURES Each polo pony continued training and received either clenbuterol (0.8 μg/kg) or an equal volume of corn syrup (placebo) orally twice daily for 21 days, and then was evaluated for another 21-day period. Nonworking horses received clenbuterol or placebo at the same dosage for 21 days in a crossover trial (2 treatments/horse). For working and nonworking horses, percentage body fat (PBF) was estimated before treatment and then 2 and 3 times/wk, respectively. Body weight was measured at intervals. RESULTS Full data sets were not available for 8 working horses. For working horses, a significant treatment effect of clenbuterol was detected by day 3 and continued through the last day of treatment; at day 21, the mean change in PBF from baseline following clenbuterol or placebo treatment was -0.80% (representing a 12% decrease in PBF) and -0.32%, respectively. By day 32 through 42 (without treatment), PBF change did not differ between groups. When treated with clenbuterol, the nonworking horses had a similar mean change in PBF from baseline from day 6 onward, which peaked at -0.75% on day 18 (an 8% decrease in PBF). Time and treatment had no significant effect on body weight in either experiment. CONCLUSIONS AND CLINICAL RELEVANCE Among the study equids, long-term low-dose clenbuterol administration resulted in significant decreases in body fat with no loss in body weight.
Collapse
Affiliation(s)
- Rose D Nolen-Walston
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348
| | | | | | | | | | | |
Collapse
|
21
|
Drosatos K, Lymperopoulos A, Kennel PJ, Pollak N, Schulze PC, Goldberg IJ. Pathophysiology of sepsis-related cardiac dysfunction: driven by inflammation, energy mismanagement, or both? Curr Heart Fail Rep 2015; 12:130-140. [PMID: 25475180 PMCID: PMC4474734 DOI: 10.1007/s11897-014-0247-z] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sepsis is a systemic inflammatory response that follows bacterial infection. Cardiac dysfunction is an important consequence of sepsis that affects mortality and has been attributed to either elevated inflammation or suppression of both fatty acid and glucose oxidation and eventual ATP depletion. Moreover, cardiac adrenergic signaling is compromised in septic patients and this aggravates further heart function. While anti-inflammatory therapies are important for the treatment of the disease, administration of anti-inflammatory drugs did not improve survival in septic patients. This review article summarizes findings on inflammatory and other mechanisms that are triggered in sepsis and affect cardiac function and mortality. Particularly, it focuses on the effects of the disease in metabolic pathways, as well as in adrenergic signaling and the potential interplay of the latter with inflammation. It is suggested that therapeutic approaches should include combination of anti-inflammatory treatments, stimulation of energy production, and restoration of adrenergic signaling in the heart.
Collapse
Affiliation(s)
- Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, 3500 N. Broad Street, MERB-951, Philadelphia, PA 19140, USA
| | - Anastasios Lymperopoulos
- Neurohormonal Control of the Circulation Lab, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, 3200 S. University Dr., Health Professions Division (Terry) Bldg/Room 1338, Fort Lauderdale, FL 33328, USA
| | - Peter Johannes Kennel
- Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Nina Pollak
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - P. Christian Schulze
- Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes & Metabolism, NYU-Langone School of Medicine, 522 First Avenue, New York, NY 10016, USA
| |
Collapse
|
22
|
Bauquier JR, Tudor E, Bailey SR. Anti-inflammatory effects of four potential anti-endotoxaemic drugs assessed in vitro
using equine whole blood assays. J Vet Pharmacol Ther 2014; 38:290-6. [DOI: 10.1111/jvp.12182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/08/2014] [Indexed: 11/28/2022]
Affiliation(s)
- J. R. Bauquier
- Faculty of Veterinary Science; University of Melbourne; Parkville Victoria Australia
| | - E. Tudor
- Faculty of Veterinary Science; University of Melbourne; Parkville Victoria Australia
| | - S. R. Bailey
- Faculty of Veterinary Science; University of Melbourne; Parkville Victoria Australia
| |
Collapse
|