1
|
Shaji A, Kumaresan A, Sinha MK, Nag P, Patil S, Jeyakumar S, Gowdar Veerappa V, Manimaran A, Ramesha K. Identification of potential differences in salivary proteomic profiles between estrus and diestrus stage of estrous cycle in dairy cows. Syst Biol Reprod Med 2024; 70:204-217. [PMID: 39008339 DOI: 10.1080/19396368.2024.2370328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 06/15/2024] [Indexed: 07/16/2024]
Abstract
In the present study, a comparative global high-throughput proteomic analysis strategy was used to identify proteomic differences between estrus and diestrus stage of estrous cycle in dairy cows. Saliva was collected from cows during estrus and diestrus, and subjected to LC-MS/MS-based proteomic analysis. A total of 2842 proteins were detected in the saliva of cows, out of which, 2437 and 1428 non-redundant proteins were identified in estrous and diestrous saliva, respectively. Further, it was found that 1414 and 405 salivary proteins were specific to estrus and diestrus, respectively while 1023 proteins were common to both groups. Among the significantly dysregulated proteins, the expression of 56 proteins was down-regulated (abundance ratio <0.5) while 40 proteins were up-regulated (abundance ratio > 2) in estrous compared to diestrous saliva. The proteins, such as HSD17B12, INHBA, HSP70, ENO1, SRD5A1, MOS, AMH, ECE2, PDGFA, OPRK1, SYN1, CCNC, PLIN5, CETN1, AKR1C4, NMNAT1, CYP2E1, and CYP19A1 were detected only in the saliva samples derived from estrous cows. Considerable number of proteins detected in the saliva of estrous cows were found to be involved in metabolic pathway, PI3K-Akt signaling pathway, toll-like receptor signaling pathway, steroid biosynthesis pathway, insulin signaling pathway, calcium signaling pathway, estrogen signaling pathway, oxytocin signaling pathway, TGF-β signaling pathway and oocyte meiosis. On the other hand, proteins detected in saliva of diestrous cows were involved mainly in metabolic pathway. Collectively, these data provide preliminary evidence of a potential difference in salivary proteins at different stages of estrous cycle in dairy cows.
Collapse
Affiliation(s)
- Arsha Shaji
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Shivanagouda Patil
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Sakthivel Jeyakumar
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Vedamurthy Gowdar Veerappa
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Ayyasamy Manimaran
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kerekoppa Ramesha
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| |
Collapse
|
2
|
Luo M, Chen Y, Pan X, Chen H, Fan L, Wen Y. E. coli Nissle 1917 ameliorates mitochondrial injury of granulosa cells in polycystic ovary syndrome through promoting gut immune factor IL-22 via gut microbiota and microbial metabolism. Front Immunol 2023; 14:1137089. [PMID: 37275915 PMCID: PMC10235540 DOI: 10.3389/fimmu.2023.1137089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Objective Gut microbiota and its metabolites have regulatory effects on PCOS related ovarian dysfunction and insulin resistance. Escherichia coli Nissle 1917 (EcN) is a genetically controlled probiotic with an excellent human safety record for improving gut microbiome metabolic disorders and immune system disorders. Here we focused to explore the application and effect of probiotic EcN on the gut microbiota-metabolism-IL-22-mitochondrial damage axis in PCOS. Methods PCOS mice were constructed with dehydroepiandrosterone (DHEA) and treated with EcN, FMT or IL-22 inhibitors. Clinically control and PCOS subjects were included for further analysis. Serum and follicular fluid supernatant levels of sex hormones, insulin, glucose, cholesterol, and inflammatory factors were detected by ELISA and biochemical reagents. The pathological changes of ovarian tissues were observed by HE staining. The JC-1 level and COX4 gene expression in granulosa cells was detected by ELISA and RT-qPCR. The expressions of progesterone receptor A (PR-A), LC3II/I, Beclin1, p62 and CytC were detected by western blot. The number of autophagosomes in granulosa cells was observed by electron microscopy. 16S rRNA and LC-MS/MS were used to analyze the changes of gut microbiota and metabolism. Results EcN promoted the recovery of sex hormone levels and ovarian tissue morphology, promoted the expression of IL-22, COX4 and PR-A in granulosa cells, and inhibited mitophagy in PCOS mice. EcN decreased the number of gut microbiota, and significantly increased the abundance of Adlercreutzia, Allobaculum, Escherichia-Shigella and Ileibacterium in PCOS mice. EcN improved metabolic disorders in PCOS mice by improving Amino sugar and nucleotide sugar metabolism pathways. IL-22 was positively associated with Ileibacterium, Adlercreutzia and Progesterone, negatively associated with RF39, Luteinizing hormone, Testosterone, N-Acetylglucosamin, L-Fucose and N-Acetylmannosamin. FMT reconfirmed that EcN ameliorated mitochondrial damage in granulosa cells of PCOS mice by gut microbiota, but this process was blocked by IL-22 inhibitor. Clinical trials have further demonstrated reduced IL-22 levels and mitochondrial damage in granulosa cells in PCOS patients. Conclusion EcN improved IL-22 level and mitochondrial damage of granulosa cells in PCOS mice by promoting the recovery of sex hormone levels and ovarian tissue morphology, inhibiting the amount of gut microbiota, and promoting amino sugar and nucleotide sugar metabolism.
Collapse
|
3
|
Nguyen LT, Lau LY, Fortes MRS. Proteomic Analysis of Hypothalamus and Pituitary Gland in Pre and Postpubertal Brahman Heifers. Front Genet 2022; 13:935433. [PMID: 35774501 PMCID: PMC9237413 DOI: 10.3389/fgene.2022.935433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
The hypothalamus and the pituitary gland are directly involved in the complex systemic changes that drive the onset of puberty in cattle. Here, we applied integrated bioinformatics to elucidate the critical proteins underlying puberty and uncover potential molecular mechanisms from the hypothalamus and pituitary gland of prepubertal (n = 6) and postpubertal (n = 6) cattle. Proteomic analysis in the hypothalamus and pituitary gland revealed 275 and 186 differentially abundant (DA) proteins, respectively (adjusted p-value < 0.01). The proteome profiles found herein were integrated with previously acquired transcriptome profiles. These transcriptomic studies used the same tissues harvested from the same heifers at pre- and post-puberty. This comparison detected a small number of matched transcripts and protein changes at puberty in each tissue, suggesting the need for multiple omics analyses for interpreting complex biological systems. In the hypothalamus, upregulated DA proteins at post-puberty were enriched in pathways related to puberty, including GnRH, calcium and oxytocin signalling pathways, whereas downregulated proteins were observed in the estrogen signalling pathway, axon guidance and GABAergic synapse. Additionally, this study revealed that ribosomal pathway proteins in the pituitary were involved in the pubertal development of mammals. The reported molecules and derived protein-protein networks are a starting point for future experimental approaches that might dissect with more detail the role of each molecule to provide new insights into the mechanisms of puberty onset in cattle.
Collapse
Affiliation(s)
- Loan To Nguyen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
- *Correspondence: Loan To Nguyen,
| | - Li Yieng Lau
- Agency of Science, Technology and Research, Singapore, Singapore
| | | |
Collapse
|
4
|
Ji H, Guo W, Niu C, Li Y, Lian S, Zhan X, Guo J, Zhen L, Yang H, Li S, Wang J. Metabonomics analysis of Zi goose follicular granulosa cells using ENO1 gene expression interference. J Anim Physiol Anim Nutr (Berl) 2019; 104:838-846. [PMID: 31821655 DOI: 10.1111/jpn.13254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
The Zi goose is native to North-east China and is noted for its high egg production. Alpha enolase (ENO1) is a glycolytic enzyme which functions as a plasminogen receptor in follicular granulosa cells (FGCs), with several studies showing that FGCs can support follicular development. By transfecting the ENO1 interfering plasmid (shRNA) into FGCs, ENO1 expression in these cells was downregulated, suggesting the successful knock-down of ENO1 in these cells. In this knock-down model, we detected 13 metabolites from FGCs using LC/MS. When compared with the non-coding shRNA (NC) group, the lower level metabolites were (R)-(+)-citronellic acid, altretamine, 3-hydroxycaproic acid, heptadecanoic acid, cholecalciferol vitamin D3, indole, benzoic acid, capric acid, caffeic acid, azelaic acid, 3,4-dihydroxyhydrocinnamic acid and cholic acid, while oleic acid was detected at high levels. To further examine the results of metabolomics, six key metabolites were verified by gas chromatography-mass spectrometry (GC-MS). We found that vitamin D3, indole, benzoic acid, capric acid and cholic acid were significantly downregulated in the shRNA group, while oleic acid was significantly upregulated. This observation was consistent with the metabolomics data. Through these studies, we found that decreased ENO1 levels altered certain metabolite levels in FGCs.
Collapse
Affiliation(s)
- Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chunyang Niu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yue Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xuelong Zhan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Li Zhen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
5
|
Yu D, Zhang L, Wang H, Chen F, Chen J, Zhang Z, Li J, Xing C, Li H, Li J, Cai Y. A potential role for SMAD9 in goose follicular selection through regulation of mRNA levels of luteinizing hormone receptor. Theriogenology 2019; 135:204-212. [DOI: 10.1016/j.theriogenology.2018.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022]
|
6
|
Muthukumar S, Rajkumar R, Rajesh D, Saibaba G, Liao C, Archunan G, Padmanabhan P, Gulyas B. Exploration of salivary proteins in buffalo: an approach to find marker proteins for estrus. FASEB J 2014; 28:4700-9. [DOI: 10.1096/fj.14-252288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Subramanian Muthukumar
- Center for Pheromone TechnologyDepartment of Animal ScienceBharathidasan UniversityTiruchirappalliTamil NaduIndia
| | | | - Durairaj Rajesh
- Center for Pheromone TechnologyDepartment of Animal ScienceBharathidasan UniversityTiruchirappalliTamil NaduIndia
| | - Ganesan Saibaba
- Center for Pheromone TechnologyDepartment of Animal ScienceBharathidasan UniversityTiruchirappalliTamil NaduIndia
| | - Chen‐Chung Liao
- Proteomics Research CenterNational Yang‐Ming UniversityTaipeiTaiwan
| | - Govindaraju Archunan
- Center for Pheromone TechnologyDepartment of Animal ScienceBharathidasan UniversityTiruchirappalliTamil NaduIndia
| | | | - Balazs Gulyas
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore
| |
Collapse
|