1
|
Davies ML, Biryukov SS, Rill NO, Klimko CP, Hunter M, Dankmeyer JL, Miller JA, Shoe JL, Mlynek KD, Talyansky Y, Toothman RG, Qiu J, Bozue JA, Cote CK. Sex differences in immune protection in mice conferred by heterologous vaccines for pneumonic plague. Front Immunol 2024; 15:1397579. [PMID: 38835755 PMCID: PMC11148226 DOI: 10.3389/fimmu.2024.1397579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Background Yersinia pestis is the etiological agent of plague, which can manifest as bubonic, septicemic, and/or pneumonic disease. Plague is a severe and rapidly progressing illness that can only be successfully treated with antibiotics initiated early after infection. There are no FDA-approved vaccines for plague, and some vaccine candidates may be less effective against pneumonic plague than bubonic plague. Y. pestis is not known to impact males and females differently in mechanisms of pathogenesis or severity of infection. However, one previous study reported sex-biased vaccine effectiveness after intranasal Y. pestis challenge. As part of developing a safe and effective vaccine, it is essential that potential sex differences are characterized. Methods In this study we evaluated novel vaccines in male and female BALB/c mice using a heterologous prime-boost approach and monitored survival, bacterial load in organs, and immunological correlates. Our vaccine strategy consisted of two subcutaneous immunizations, followed by challenge with aerosolized virulent nonencapsulated Y. pestis. Mice were immunized with a combination of live Y. pestis pgm- pPst-Δcaf1, live Y. pestis pgm- pPst-Δcaf1/ΔyopD, or recombinant F1-V (rF1-V) combined with adjuvants. Results The most effective vaccine regimen was initial priming with rF1-V, followed by boost with either of the live attenuated strains. However, this and other strategies were more protective in female mice. Males had higher bacterial burden and differing patterns of cytokine expression and serum antibody titers. Male mice did not demonstrate synergy between vaccination and antibiotic treatment as repeatedly observed in female mice. Conclusions This study provides new knowledge about heterologous vaccine strategies, sex differences in plague-vaccine efficacy, and the immunological factors that differ between male and female mice.
Collapse
Affiliation(s)
- Michael L Davies
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Sergei S Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Nathaniel O Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jeremy A Miller
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jennifer L Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Kevin D Mlynek
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Yuli Talyansky
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Ronald G Toothman
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Ju Qiu
- Regulated Research Administration: Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Joel A Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| |
Collapse
|
2
|
Salinas-Estrella E, Amaro-Estrada I, Cobaxin-Cárdenas ME, Preciado de la Torre JF, Rodríguez SD. Bovine Anaplasmosis: Will there ever be an almighty effective vaccine? Front Vet Sci 2022; 9:946545. [PMID: 36277070 PMCID: PMC9581321 DOI: 10.3389/fvets.2022.946545] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022] Open
Abstract
Bovine anaplasmosis is a tick-borne bacterial disease with a worldwide distribution and the cause of severe economic losses in the livestock industry in many countries, including México. In the present work, we first review the elements of the immune response of the bovine, which allows ameliorating the clinical signs while eliminating the majority of the blood forms and generating an immunologic memory such that future confrontations with the pathogen will not end in disease. On the other hand, many vaccine candidates have been evaluated for the control of bovine anaplasmosis yet without no commercial worldwide effective vaccine. Lastly, the diversity of the pathogen and how this diversity has impaired the many efforts to control the disease are reviewed.
Collapse
|
3
|
Molecular and recombinant characterization of major surface protein 5 from Anaplasma marginale. Acta Trop 2021; 220:105933. [PMID: 33895143 DOI: 10.1016/j.actatropica.2021.105933] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/01/2021] [Accepted: 04/17/2021] [Indexed: 01/22/2023]
Abstract
Anaplasmosis is a tick-borne disease caused by the intracellular rickettsia Anaplasma marginale, which affects cattle and other ruminants in both tropical and subtropical regions of the world, and also causing tremendous economic losses due to decreasing livestock production. The major surface protein 5 (MSP5) of A. marginale is an immunodominant and highly conserved protein encoding by a single gene. In the present study, the complete full-length of the msp5 coding sequence of A. marginale Thailand strain was cloned and determined at a size of 633 bp. Phylogenetic analysis based on neigh-joining (NJ) method showed that the msp5 sequence Thailand strains were clearly distributed in 3rd clade and conserved when compared with other strains. The results showed 9 haplotypes of the msp5 genes, and the entropy analysis of MSP5 amino acid sequences displayed 92 high entropy peaks with value ranging from 0.198 to 0.845 Additionally, a recombinant MSP5 of A. marginale (rAmMSP5) was over-expressed in the E. coli BL21 Star™ (DE3) host cell, affinity purified, and found in SDS-PAGE at a molecular weight of 26 kDa. The antigenicity of rAmMSP5 (26 kDa) and AmMSP5 (19 kDa) was recognized by rabbit anti-rAmMSP5 antisera and A. marginale-infected cattle sera. Both rAmMSP5 and AmMSP5 were perceived by these sera manifesting that recombinant and native AmMSP5 have conserved epitopes. Immunofluorescence technique using rabbit anti-rAmMSP5 antisera exhibited that the AmMSP5 is distributed on both the membrane and the outside of infected erythrocytes. Therefore, the recombinant MSP5 could be used for the development of immunodiagnostic assays and vaccine purposes for controlling anaplasmosis.
Collapse
|
4
|
Primo ME, Thompson CS, Valentini BS, Sarli M, Novoa MB, Mangold AJ, de Echaide ST. Development of a novel fusion protein with Anaplasma marginale and A. centrale MSP5 improved performance of Anaplasma antibody detection by cELISA in infected and vaccinated cattle. PLoS One 2019; 14:e0211149. [PMID: 30673770 PMCID: PMC6344023 DOI: 10.1371/journal.pone.0211149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/08/2019] [Indexed: 11/18/2022] Open
Abstract
Detection of antibodies to Anaplasma spp. using commercial competitive enzyme-linked immunosorbent assay (ccELISA) is based on the recombinant major surface protein 5 fused to maltose binding protein (MBP-MSP5) or glutathione S-transferase (GST-MSP5). To avoid false positive reactions due to the presence of antibodies against E. coli MBP in cattle, previous sera absorption is required. This study evaluated the replacement of MBP-MSP5 or GST-MSP5 antigens by the truncate MSP5 (residues 28–210) of A. marginale (tMSP5m), A. centrale (tMSP5c) and fusion protein MSP5 (tMSP5cm), expressed without N-terminus transmembrane helix in the ccELISA test. Immunoreactivity was evaluated by western blot using monoclonal antibodies against the tMSP5 and by in-house cELISA (hcELISA) with purified tMSP5m, tMSP5c or tMSP5cm using sera from cattle infected with A. marginale (n = 226) or vaccinated with A. centrale (n = 173) and uninfected cattle (n = 216). Results of hcELISA were compared with those of ccELISA. Recombinant protein was expressed highly soluble (> 95%) in E. coli without a molecular chaperone. Specificity of the hcELISA-tMSP5m, -MSP5c or -tMSP5cm was identical to (99.5%) and greater than that in ccELISA (96.3%). Sensitivity of hcELISA-tMSP5m and ccELISA was identical (95.5%), but lower than that of hcELISA-tMSP5cm (96.2%) and -tMSP5c (97.2%). The analysis of vaccinated cattle by hcELISA-tMSP5c showed sensitivity of 99.4%. In summary, the generation of fusion MSP5 A. marginale-A. centrale protein without transmembrane helix was a very effective method to express the recombinant protein highly soluble in the bacterial cytoplasm and contributed to an increased test performance for detecting antibodies in cattle naturally infected with A. marginale or vaccinated with A. centrale.
Collapse
Affiliation(s)
- María E. Primo
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- * E-mail:
| | - Carolina S. Thompson
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
| | - Beatriz S. Valentini
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
| | - Macarena Sarli
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - María B. Novoa
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Atilio J. Mangold
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Susana T. de Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina
| |
Collapse
|
5
|
Crosby FL, Lundgren AM, Hoffman C, Pascual DW, Barbet AF. VirB10 vaccination for protection against Anaplasma phagocytophilum. BMC Microbiol 2018; 18:217. [PMID: 30563470 PMCID: PMC6299599 DOI: 10.1186/s12866-018-1346-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022] Open
Abstract
Background Human granulocytic anaplasmosis (HGA) is a tick-borne disease caused by the etiologic agent Anaplasma phagocytophilum. HGA was designated a nationally notifiable disease in the United States in 1998. Currently there are no vaccines available against HGA. Conserved membrane proteins that are subdominant in Anaplasma species, such as VirB9 and VirB10, may represent better vaccine targets than the variable immunodominant surface proteins. VirB9 and VirB10 are constituents of the Type 4 secretion system (T4SS) that is conserved amongst many intracellular bacteria and performs essential functions for invasion and survival in host cells. Results Immunogenicity and contribution to protection, provided after intramuscular vaccination of plasmid DNA encoding VirB9-1, VirB9-2, and VirB10 followed by inoculation of homologous recombinant proteins, in a prime-boost immunization strategy was evaluated in a murine model of HGA. Recombinant VirB9-1-, VirB9-2-, and VirB10-vaccinated mice developed antibody responses that specifically reacted with A. phagocytophilum organisms. However, only the mice vaccinated with VirB10 developed a significant increase in IFN-γ CD4+ T cells and partial protection against challenge with A. phagocytophilum. Conclusions This work provides evidence that A. phagocytophilum T4SS VirB10 is partially protective in a murine model against infection in an IFN-γ-dependent fashion and suggests that this protein may be a potential vaccine candidate against this and possibly other pathogenic bacteria with a T4SS.
Collapse
Affiliation(s)
- Francy L Crosby
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA.
| | - Anna M Lundgren
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA
| | - David W Pascual
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA
| | - Anthony F Barbet
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32608, USA
| |
Collapse
|
6
|
Rota RP, Palacios CA, Temprana CF, Argüelles MH, Mandile MG, Mattion N, Laimbacher AS, Fraefel C, Castello AA, Glikmann G. Evaluation of the immunogenicity of a recombinant HSV-1 vector expressing human group C rotavirus VP6 protein. J Virol Methods 2018; 256:24-31. [PMID: 29496429 DOI: 10.1016/j.jviromet.2018.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 12/01/2022]
Abstract
Group C Rotavirus (RVC) has been associated globally with sporadic outbreaks of gastroenteritis in children and adults. RVC also infects animals, and interspecies transmission has been reported as well as its zoonotic potential. Considering its genetic diversity and the absence of effective vaccines, it is important and necessary to develop new generation vaccines against RVC for both humans and animals. The aim of the present study was to develop and characterize an HSV-1-based amplicon vector expressing a human RVC-VP6 protein and evaluate the humoral immune response induced after immunizing BALB/c mice. Local fecal samples positive for RVC were used for isolation and sequencing of the vp6 gene, which phylogenetically belongs to the I2 genotype. We show here that cells infected with the HSV[VP6C] amplicon vector efficiently express the VP6 protein, and induced specific anti-RVC antibodies in mice immunized with HSV[VP6C], in a prime-boost schedule. This work highlights that amplicon vectors are an attractive platform for the generation of safe genetic immunogens against RVC, without the addition of external adjuvants.
Collapse
Affiliation(s)
- Rosana P Rota
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina
| | - Carlos A Palacios
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - C Facundo Temprana
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo H Argüelles
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina
| | - Marcelo G Mandile
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nora Mattion
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Andrea S Laimbacher
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, CH-8057, Zurich, Switzerland
| | - Cornell Fraefel
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, CH-8057, Zurich, Switzerland
| | - Alejandro A Castello
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina
| | - Graciela Glikmann
- Laboratorio de Inmunología y Virología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Speranza MC, Kasai K, Lawler SE. Preclinical Mouse Models for Analysis of the Therapeutic Potential of Engineered Oncolytic Herpes Viruses. ILAR J 2017; 57:63-72. [PMID: 27034396 DOI: 10.1093/ilar/ilw002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After more than two decades of research and development, oncolytic herpes viruses (oHSVs) are moving into the spotlight due to recent encouraging clinical trial data. oHSV and other oncolytic viruses function through direct oncolytic cancer cell-killing mechanisms and by stimulating antitumor immunity. As further viruses are developed and optimized for the treatment of various types of cancer, appropriate predictive preclinical models will be of great utility. This review will discuss existing data in this area, focusing on the mouse tumor models that are commonly used.
Collapse
Affiliation(s)
- Maria-Carmela Speranza
- Maria-Carmela Speranza, PhD, is a post-doctoral fellow; Kazue Kasai, PhD, is a Research Specialist; and Sean E. Lawler, PhD, is an Assistant Professor in the Harvey Cushing Neurooncology Laboratories in the Department of Neurosurgery at Brigham and Women's Hospital, Harvard Medical School in Boston, Massachusetts
| | - Kazue Kasai
- Maria-Carmela Speranza, PhD, is a post-doctoral fellow; Kazue Kasai, PhD, is a Research Specialist; and Sean E. Lawler, PhD, is an Assistant Professor in the Harvey Cushing Neurooncology Laboratories in the Department of Neurosurgery at Brigham and Women's Hospital, Harvard Medical School in Boston, Massachusetts
| | - Sean E Lawler
- Maria-Carmela Speranza, PhD, is a post-doctoral fellow; Kazue Kasai, PhD, is a Research Specialist; and Sean E. Lawler, PhD, is an Assistant Professor in the Harvey Cushing Neurooncology Laboratories in the Department of Neurosurgery at Brigham and Women's Hospital, Harvard Medical School in Boston, Massachusetts
| |
Collapse
|