1
|
Nascente EDP, Amorim RL, Fonseca-Alves CE, de Moura VMBD. Comparative Pathobiology of Canine and Human Prostate Cancer: State of the Art and Future Directions. Cancers (Basel) 2022; 14:2727. [PMID: 35681707 PMCID: PMC9179314 DOI: 10.3390/cancers14112727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
First described in 1817, prostate cancer is considered a complex neoplastic entity, and one of the main causes of death in men in the western world. In dogs, prostatic carcinoma (PC) exhibits undifferentiated morphology with different phenotypes, is hormonally independent of aggressive character, and has high rates of metastasis to different organs. Although in humans, the risk factors for tumor development are known, in dogs, this scenario is still unclear, especially regarding castration. Therefore, with the advent of molecular biology, studies were and are carried out with the aim of identifying the main molecular mechanisms and signaling pathways involved in the carcinogenesis and progression of canine PC, aiming to identify potential biomarkers for diagnosis, prognosis, and targeted treatment. However, there are extensive gaps to be filled, especially when considering the dog as experimental model for the study of this neoplasm in humans. Thus, due to the complexity of the subject, the objective of this review is to present the main pathobiological aspects of canine PC from a comparative point of view to the same neoplasm in the human species, addressing the historical context and current understanding in the scientific field.
Collapse
Affiliation(s)
- Eduardo de Paula Nascente
- School of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia 74001-970, Brazil;
| | - Renée Laufer Amorim
- Veterinary Clinic Department, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-970, Brazil;
| | | |
Collapse
|
2
|
Thiemeyer H, Taher L, Schille JT, Packeiser EM, Harder LK, Hewicker-Trautwein M, Brenig B, Schütz E, Beck J, Nolte I, Murua Escobar H. An RNA-Seq-Based Framework for Characterizing Canine Prostate Cancer and Prioritizing Clinically Relevant Biomarker Candidate Genes. Int J Mol Sci 2021; 22:11481. [PMID: 34768937 PMCID: PMC8584104 DOI: 10.3390/ijms222111481] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer (PCa) in dogs is a highly malignant disease akin to its human counterpart. In contrast to the situation in humans, multi-gene approaches facilitating risk stratification of canine PCa are barely established. The aims of this study were the characterization of the transcriptional landscape of canine PCa and the identification of diagnostic, prognostic and/or therapeutic biomarkers through a multi-step screening approach. RNA-Sequencing of ten malignant tissues and fine-needle aspirations (FNA), and 14 nonmalignant tissues and FNAs was performed to find differentially expressed genes (DEGs) and deregulated pathways. The 4098 observed DEGs were involved in 49 pathways. These 49 pathways could be grouped into five superpathways summarizing the hallmarks of canine PCa: (i) inflammatory response and cytokines; (ii) regulation of the immune system and cell death; (iii) cell surface and PI3K signaling; (iv) cell cycle; and (v) phagosome and autophagy. Among the highly deregulated, moderately to strongly expressed DEGs that were members of one or more superpathways, 169 DEGs were listed in relevant databases and/or the literature and included members of the PCa pathway, oncogenes, prostate-specific genes, and druggable genes. These genes are novel and promising candidate diagnostic, prognostic and/or therapeutic canine PCa biomarkers.
Collapse
Affiliation(s)
- Heike Thiemeyer
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (H.T.); (J.T.S.); (E.-M.P.); (L.K.H.); (I.N.)
- Department of Hematology/Oncology/Palliative Care, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, 8010 Graz, Austria;
| | - Jan Torben Schille
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (H.T.); (J.T.S.); (E.-M.P.); (L.K.H.); (I.N.)
- Department of Hematology/Oncology/Palliative Care, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Eva-Maria Packeiser
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (H.T.); (J.T.S.); (E.-M.P.); (L.K.H.); (I.N.)
- Department of Hematology/Oncology/Palliative Care, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Lisa K. Harder
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (H.T.); (J.T.S.); (E.-M.P.); (L.K.H.); (I.N.)
| | - Marion Hewicker-Trautwein
- Institute of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, 37077 Göttingen, Germany;
| | - Ekkehard Schütz
- Chronix Biomedical GmbH, 37079 Göttingen, Germany; (E.S.); (J.B.)
| | - Julia Beck
- Chronix Biomedical GmbH, 37079 Göttingen, Germany; (E.S.); (J.B.)
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (H.T.); (J.T.S.); (E.-M.P.); (L.K.H.); (I.N.)
| | - Hugo Murua Escobar
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (H.T.); (J.T.S.); (E.-M.P.); (L.K.H.); (I.N.)
- Department of Hematology/Oncology/Palliative Care, Rostock University Medical Centre, 18057 Rostock, Germany
- Comprehensive Cancer Center Mecklenburg-Vorpommern (CCC-MV), Campus Rostock, University of Rostock, 18057 Rostock, Germany
| |
Collapse
|
3
|
Weiner F, Schille JT, Koczan D, Wu XF, Beller M, Junghanss C, Hewicker-Trautwein M, Murua Escobar H, Nolte I. Novel chemotherapeutic agent FX-9 activates NF-κB signaling and induces G1 phase arrest by activating CDKN1A in a human prostate cancer cell line. BMC Cancer 2021; 21:1088. [PMID: 34625047 PMCID: PMC8501574 DOI: 10.1186/s12885-021-08836-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 11/23/2022] Open
Abstract
Background The aminoisoquinoline FX-9 shows pro-apoptotic and antimitotic effects against lymphoblastic leukemia cells and prostate adenocarcinoma cells. In contrast, decreased cytotoxic effects against non-neoplastic blood cells, chondrocytes, and fibroblasts were observed. However, the actual FX-9 molecular mode of action is currently not fully understood. Methods In this study, microarray gene expression analysis comparing FX-9 exposed and unexposed prostate cancer cells (PC-3 representing castration-resistant prostate cancer), followed by pathway analysis and gene annotation to functional processes were performed. Immunocytochemistry staining was performed with selected targets. Results Expression analysis revealed 0.83% of 21,448 differential expressed genes (DEGs) after 6-h exposure of FX-9 and 0.68% DEGs after 12-h exposure thereof. Functional annotation showed that FX-9 primarily caused an activation of inflammatory response by non-canonical nuclear factor-kappa B (NF-κB) signaling. The 6-h samples showed activation of the cell cycle inhibitor CDKN1A which might be involved in the secondary response in 12-h samples. This secondary response predominantly consisted of cell cycle-related changes, with further activation of CDKN1A and inhibition of the transcription factor E2F1, including downstream target genes, resulting in G1-phase arrest. Matching our previous observations on cellular level senescence signaling pathways were also found enriched. To verify these results immunocytochemical staining of p21 Waf1/Cip1 (CDKN1A), E2F1 (E2F1), PAI-1 (SERPNE1), and NFkB2/NFkB p 100 (NFKB2) was performed. Increased expression of p21 Waf1/Cip1 and NFkB2/NFkB p 100 after 24-h exposure to FX-9 was shown. E2F1 and PAI-1 showed no increased expression. Conclusions FX-9 induced G1-phase arrest of PC-3 cells through activation of the cell cycle inhibitor CDKN1A, which was initiated by an inflammatory response of noncanonical NF-κB signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08836-y.
Collapse
Affiliation(s)
- F Weiner
- Small Animal Clinic, University of Veterinary Medicine Hannover, 30559, Hannover, Germany.,Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, University of Rostock, 18057, Rostock, Germany
| | - J T Schille
- Small Animal Clinic, University of Veterinary Medicine Hannover, 30559, Hannover, Germany.,Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, University of Rostock, 18057, Rostock, Germany
| | - D Koczan
- Core Facility for Microarray Analysis, Institute for Immunology, University of Rostock, 18057, Rostock, Germany
| | - X-F Wu
- Leibniz Institute for Catalysis, 18059, Rostock, Germany
| | - M Beller
- Leibniz Institute for Catalysis, 18059, Rostock, Germany
| | - C Junghanss
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, University of Rostock, 18057, Rostock, Germany
| | - M Hewicker-Trautwein
- Department of Pathology, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - H Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, University of Rostock, 18057, Rostock, Germany.,Comprehensive Cancer Center - Mecklenburg Vorpommern (CCC-MV), Campus Rostock, University of Rostock, 18057, Rostock, Germany
| | - I Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, 30559, Hannover, Germany.
| |
Collapse
|
4
|
Packeiser EM, Hewicker-Trautwein M, Thiemeyer H, Mohr A, Junginger J, Schille JT, Murua Escobar H, Nolte I. Characterization of six canine prostate adenocarcinoma and three transitional cell carcinoma cell lines derived from primary tumor tissues as well as metastasis. PLoS One 2020; 15:e0230272. [PMID: 32168360 PMCID: PMC7069630 DOI: 10.1371/journal.pone.0230272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Canine prostate adenocarcinoma (PAC) and transitional cell carcinoma (TCC) of prostate and urinary bladder are highly invasive and metastatic tumors of closely neighbored organs. Cell lines are valuable tools to investigate tumor mechanisms and therapeutic approaches in vitro. PAC in dogs is infrequent, difficult to differentiate from TCC and usually characterized by poor prognosis, enhancing the value of the few available cell lines. However, as cell lines adapt to culturing conditions, a thorough characterization, ideally compared to original tissue, is indispensable. Herein, six canine PAC cell lines and three TCC cell lines were profiled by immunophenotype in comparison to respective original tumor tissues. Three of the six PAC cell lines were derived from primary tumor and metastases of the same patient. Further, two of the three TCC cell lines were derived from TCCs invading into or originating from the prostate. Cell biologic parameters as doubling times and chemoresistances to commonly used drugs in cancer treatment (doxorubicin, carboplatin and meloxicam) were assessed. All cell lines were immunohistochemically close to the respective original tissue. Compared to primary tumor cell lines, metastasis-derived cell lines were more chemoresistant to doxorubicin, but equally susceptive to carboplatin treatment. Two cell lines were multiresistant. COX-2 enzyme activity was demonstrated in all cell lines. However, meloxicam inhibited prostaglandin E2 production in only seven of nine cell lines and did neither influence metabolic activity, nor proliferation. The characterized nine cell lines represent excellent tools to investigate PAC as well as TCC in prostate and urinary bladder of the dog. Furthermore, the profiled paired cell lines from PAC primary tumor and metastasis provide the unique opportunity to investigate metastasis-associated changes PAC cells undergo in tumor progression. The combination of nine differently chemoresistant PAC and TCC cell lines resembles the heterogeneity of canine lower urinary tract cancer.
Collapse
Affiliation(s)
- Eva-Maria Packeiser
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Centre Rostock, Rostock, Germany
| | | | - Heike Thiemeyer
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Annika Mohr
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Johannes Junginger
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jan Torben Schille
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Centre Rostock, Rostock, Germany
| | - Hugo Murua Escobar
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Centre Rostock, Rostock, Germany
- * E-mail: (HME); (IN)
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail: (HME); (IN)
| |
Collapse
|