1
|
Yan X, Gu C, Yu Z, Zhao M, He L. Histidine Kinase QseC in Glaesserella parasuis Enhances the Secretion of Proinflammatory Cytokines by Macrophages via the p38 and NF-κB Signaling Pathways. DNA Cell Biol 2024; 43:474-481. [PMID: 39049814 DOI: 10.1089/dna.2024.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
The qseC gene is a two-component system that encodes a histidine protein kinase and is highly conserved among different Glaesserella parasuis strains. In this study, we used qRT-PCR and enzyme-linked immunosorbent assay to confirm that Toll-like receptor 4 (TLR4) plays a role in the expression of proinflammatory cytokines interleukin (IL)-1β and IL-6 by stimulating RAW 264.7 macrophages with QseC. Furthermore, we revealed that blocking the p38 and NF-κB pathways that regulate signaling can significantly reduce the production of proinflammatory cytokines induced by QseC. In summary, our data suggest that QseC is a novel proinflammatory mediator that induces TLR4-dependent proinflammatory activity in RAW 264.7 macrophages through the p38 and NF-κB pathways.
Collapse
Affiliation(s)
- Xuefeng Yan
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Congwei Gu
- Technology Department, Experimental Animal Center, Southwest Medical University, Luzhou, China
| | - Zehui Yu
- Technology Department, Experimental Animal Center, Southwest Medical University, Luzhou, China
| | - Mingde Zhao
- Technology Department, Experimental Animal Center, Southwest Medical University, Luzhou, China
| | - Lvqin He
- Technology Department, Experimental Animal Center, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Exploration of Clinical Breakpoint of Danofloxacin for Glaesserella parasuis in Plasma and in PELF. Antibiotics (Basel) 2021; 10:antibiotics10070808. [PMID: 34356730 PMCID: PMC8300709 DOI: 10.3390/antibiotics10070808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 02/02/2023] Open
Abstract
Background: In order to establish the clinical breakpoint (CBP) of danofloxacin against G. parasuis, three cutoff values, including epidemiological cutoff value (ECV), pharmacokinetic-pharmacodynamic (PK-PD) cutoff value (COPD) and clinical cutoff value (COCL), were obtained in the present study. Methods: The ECV was calculated using ECOFFinder base on the MIC distribution of danfloxacin against 347 G. parasuis collected from disease pigs. The COPD was established based on in vivo and ex vivo PK-PD modeling of danofloxacin both in plasma and pulmonary epithelial lining fluid (PELF) using Hill formula and Monte Carlo analysis. The COCL was established based on the relationship between the possibility of cure (POC) and MIC in the clinical trials using the "WindoW" approach, nonlinear regression and CART analysis. Results: The MIC50 and MIC90 of danofloxacin against 347 G. parasuis were 2 μg/mL and 8 μg/mL, respectively. The ECV value was set to 8 μg/mL using ECOFFinder. Concentration-time curves of danofloxacin were fitted with a two-compartment PK model. The PK parameters of the maximum concentration (Cmax) and area under concentration-time curves (AUC) in PELF were 3.67 ± 0.25 μg/mL and 24.28 ± 2.70 h·μg/mL, higher than those in plasma (0.67 ± 0.01 μg/mL and 4.47 ± 0.51 h·μg/mL). The peak time (Tmax) in plasma was 0.23 ± 0.07 h, shorter than that in PELF (1.61 ± 0.15 h). The COPD in plasma and PELF were 0.125 μg/mL and 0.5 μg/mL, respectively. The COCL calculated by WindoW approach, nonlinear regression and CART analysis were 0.125-4 μg/mL, 0.428 μg/mL and 0.56 μg/mL, respectively. The 0.5 μg/mL was selected as eligible COCL. The ECV is much higher than the COPD and COCL, and the clinical breakpoint based on data in plasma was largely different from that of PELF. Conclusions: Our study firstly established three cutoff values of danofloxacin against G. parasuis. It suggested that non-wild-type danofloxacin-resistant G. parasuis may lead to ineffective treatment by danofloxacin.
Collapse
|
3
|
Qi B, Li F, Chen K, Ding W, Xue Y, Wang Y, Wang H, Ding K, Zhao Z. Comparison of the Glaesserella parasuis Virulence in Mice and Piglets. Front Vet Sci 2021; 8:659244. [PMID: 34250058 PMCID: PMC8265781 DOI: 10.3389/fvets.2021.659244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/24/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we compared the virulence of the most common serovars of Glaesserella parasuis in China, serovars 4, 5, 12, and 13 (36 strains in total) in BALB/c mice and piglets. In mice, the median lethal doses (LD50s) of the four serovars were roughly 9.80 × 107–4.60 × 109 CFU, 2.10 × 108–8.85 × 109 CFU, 4.81 × 107–7.01 × 109 CFU, and 1.75 × 108–8.45 × 108 CFU, respectively. Serovar 13 showed the strongest virulence, followed by serovar 4, serovar 12, and serovar 5, but a significant difference in virulence was only observed between serovars 5 and 13. The virulence of strains of the same serovars differed significantly in piglets. Virulent and attenuated strains were present in all serovars, but serovar 5 was the most virulent in piglets, followed by serovars 13, 4, and 12. A significant difference in virulence was observed between serovars 5 and 4 and between serovars 5 and 12. However, the virulence of serovars 5 and 13 did not differ significantly. This comprehensive analysis of G. parasuis virulence in mice and piglets demonstrated that: (1) the order of virulence of the four domestic epidemic serovars (from strongest to weakest) in piglets was serovars 5, 13, 4, and 12; (2) both virulent and attenuated strains were present in all serovars, so virulence did not necessarily correlate with serovar; (3) Although G. parasuis was fatal in BALB/c mice, its virulence is inconsistent with that in piglets, indicating that BALB/c mice are inadequate as an alternative model of G. parasuis infection.
Collapse
Affiliation(s)
- Baichuan Qi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Feiyue Li
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Kunpeng Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Wenwen Ding
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Yun Xue
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Yang Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China.,Henan Provincial Open Laboratory of Key Disciplines in Environmental and Animal Products Safety, Henan University of Science and Technology, Luoyang, China
| | - Hongwei Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China.,Henan Provincial Open Laboratory of Key Disciplines in Environmental and Animal Products Safety, Henan University of Science and Technology, Luoyang, China
| | - Ke Ding
- Henan Provincial Open Laboratory of Key Disciplines in Environmental and Animal Products Safety, Henan University of Science and Technology, Luoyang, China
| | - Zhanqin Zhao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China.,Henan Provincial Open Laboratory of Key Disciplines in Environmental and Animal Products Safety, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
4
|
Mi K, Sun D, Li M, Hao H, Zhou K, Liu Z, Yuan Z, Huang L. Evidence for Establishing the Clinical Breakpoint of Cefquinome against Haemophilus Parasuis in China. Pathogens 2021; 10:pathogens10020105. [PMID: 33498972 PMCID: PMC7912692 DOI: 10.3390/pathogens10020105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/31/2022] Open
Abstract
Haemophilus parasuis can cause high morbidity and mortality in swine. Cefquinome possesses excellent antibacterial activity against pathogens causing diseases of the respiratory tract. This study aimed to establish the clinical breakpoint (CBP) of cefquinome against H. parasuis and to monitor the resistance change. Referring to the minimum inhibitory concentration (MIC) distribution of cefquinome against 131 H. parasuis isolates, the MIC50 and MIC90 were determined to be 0.125 and 1 μg/mL, respectively. And the epidemiological cutoff (ECOFF) value was 1 μg/mL. HPS42 was selected as a representative strain for the pharmacodynamic (PD) experiment, pharmacokinetic (PK) experiment and clinical experiments. The PK/PD index values, area under concentration-time curve (AUC)/MIC, of the bacteriostatic, bactericidal, and bacterial elimination effects were 23, 41, and 51 h, respectively. The PK/PD cutoff was calculated as 0.125 μg/mL by Monte Carlo simulation (MCS), and the clinical cutoff was 0.25−4 μg/mL by WindoW. Combing these three values, the CBP of cefquinome against H. parasuis was found to be 1 μg/mL. In conclusion, this was the first study to integrate various cutoffs to establish the CBP in the laboratory. It is helpful to distinguish wild type H. parasuis and reduce the probability of treatment failure.
Collapse
Affiliation(s)
- Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430000, China; (K.M.); (D.S.); (H.H.); (Z.L.); (Z.Y.)
| | - Da Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430000, China; (K.M.); (D.S.); (H.H.); (Z.L.); (Z.Y.)
| | - Mei Li
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (M.L.); (K.Z.)
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430000, China; (K.M.); (D.S.); (H.H.); (Z.L.); (Z.Y.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (M.L.); (K.Z.)
| | - Kaixiang Zhou
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (M.L.); (K.Z.)
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430000, China; (K.M.); (D.S.); (H.H.); (Z.L.); (Z.Y.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (M.L.); (K.Z.)
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430000, China; (K.M.); (D.S.); (H.H.); (Z.L.); (Z.Y.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (M.L.); (K.Z.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430000, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430000, China; (K.M.); (D.S.); (H.H.); (Z.L.); (Z.Y.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430000, China; (M.L.); (K.Z.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430000, China
- Correspondence:
| |
Collapse
|
5
|
Xu YL, Wu SP, Li YG, Sun FX, Wang QJ, Zhao Q, Yu J, Tian FL, Wu JQ, Zhu RL, Peng J. A porcine alveolar macrophage cell line stably expressing CD163 demonstrates virus replication and cytokine secretion characteristics similar to primary alveolar macrophages following PRRSV infection. Vet Microbiol 2020; 244:108690. [PMID: 32402349 DOI: 10.1016/j.vetmic.2020.108690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/04/2020] [Accepted: 04/10/2020] [Indexed: 11/30/2022]
Abstract
The in vitro investigation of cytokine secretion induced by porcine reproductive and respiratory syndrome virus (PRRSV) requires porcine alveolar macrophages (PAMs) and their interaction with immunocytes. However, immortalized monoclonal PAMs (mPAMs) are non-permissive for PRRSV infection. The porcine CD163 receptor isolated from primary PAMs (pPAMs) confers susceptibility to PRRSV infection; thus, this approach could be used to establish a novel cell line to facilitate the exploration of PRRSV infection kinetics. Here, we amplified the coding region of the CD163 gene from pPAMs and integrated it into an mPAM line using a lentivirus expression system. After verification, the monoclonal PAM cell line stably expressing CD163 (mPAM-CD163-GFP) was infected with either the highly pathogenic PRRSV strain JXA1 or the classical PRRSV strain SD1, which produced high infectious titers of progeny virus reaching > 109 copies/mL or a 50 % tissue culture infective dose of 105.5 over at least 100 cell generations. We also investigated cytokine and Toll-like receptor expression in infected mPAM-CD163-GFP cells and pPAMs. The mPAM-CD163-GFP cell line showed similar patterns of viral replication and cytokine secretion compared with pPAMs, so it may be extremely useful for replacing primary cells for in vitro investigations of the mechanisms of cytokine secretion and interactions between PRRSV-infected PAMs and immunocytes.
Collapse
Affiliation(s)
- Yu-Lin Xu
- College of Veterinary Medicine, Shandong Agricultural University, and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China; East China Research Center of Animal Epidemic Pathogen Biology, Ministry of Agriculture and Rural Affairs of China, Taian 271000, China
| | - Shao-Peng Wu
- College of Veterinary Medicine, Shandong Agricultural University, and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China; East China Research Center of Animal Epidemic Pathogen Biology, Ministry of Agriculture and Rural Affairs of China, Taian 271000, China
| | - Yun-Gang Li
- Shandong Centers for Animal Disease Control and Prevention, Jinan 250022, China
| | - Feng-Xia Sun
- College of Resources and Environment, Shandong Agricultural University, Taian 271000, China
| | - Qiu-Ju Wang
- College of Veterinary Medicine, Shandong Agricultural University, and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China; East China Research Center of Animal Epidemic Pathogen Biology, Ministry of Agriculture and Rural Affairs of China, Taian 271000, China
| | - Qing Zhao
- College of Veterinary Medicine, Shandong Agricultural University, and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China; East China Research Center of Animal Epidemic Pathogen Biology, Ministry of Agriculture and Rural Affairs of China, Taian 271000, China
| | - Jiang Yu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 251000, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan 250100, China
| | - Fu-Lin Tian
- Shandong Centers for Animal Disease Control and Prevention, Jinan 250022, China
| | - Jia-Qiang Wu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 251000, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan 250100, China.
| | - Rui-Liang Zhu
- College of Veterinary Medicine, Shandong Agricultural University, and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China; East China Research Center of Animal Epidemic Pathogen Biology, Ministry of Agriculture and Rural Affairs of China, Taian 271000, China.
| | - Jun Peng
- College of Veterinary Medicine, Shandong Agricultural University, and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China; East China Research Center of Animal Epidemic Pathogen Biology, Ministry of Agriculture and Rural Affairs of China, Taian 271000, China.
| |
Collapse
|
6
|
A Novel Glaesserella sp. Isolated from Pigs with Severe Respiratory Infections Has a Mosaic Genome with Virulence Factors Putatively Acquired by Horizontal Transfer. Appl Environ Microbiol 2018; 84:AEM.00092-18. [PMID: 29572210 DOI: 10.1128/aem.00092-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/19/2018] [Indexed: 01/31/2023] Open
Abstract
An unknown member of the family Pasteurellaceae was repeatedly isolated from 20- to 24-week-old pigs with severe pulmonary lesions reared on the same farm in Victoria, Australia. The etiological diagnosis of the disease was inconclusive. The complete genome sequence analysis of one strain, 15-184, revealed some phylogenic proximity to Glaesserella (Haemophilus) parasuis, the cause of Glasser's disease. However, the sequences of the 16S rRNA and housekeeping genes, as well as the average nucleotide identity scores, differed from those of all other known species in the family Pasteurellaceae The protein content of 15-184 was composite, with 60% of coding sequences matching known G. parasuis products, while more than 20% had a closer relative in the genera Actinobacillus, Mannheimia, Pasteurella, and Bibersteinia Several putative virulence genes absent from G. parasuis but present in other Pasteurellaceae were also found, including the apxIII RTX toxin gene from Actinobacillus pleuropneumoniae, ABC transporters from Actinobacillus minor, and iron transporters from various species. Three prophages and one integrative conjugative element were present in the isolate. Horizontal gene transfers might explain the mosaic genomic structure and atypical metabolic and virulence characteristics of 15-184. This organism has not been assigned a taxonomic position in the family, but this study underlines the need for a large-scale epidemiological and clinical characterization of this novel pathogen in swine populations, as a genomic analysis suggests it could have a severe impact on pig health.IMPORTANCE Several species of Pasteurellaceae cause a range of significant diseases in pigs. A novel member of this family was recently isolated from Australian pigs suffering from severe respiratory infections. Comparative whole-genome analyses suggest that this bacterium represents a new species, which possesses a number of virulence genes horizontally acquired from a diverse range of other Pasteurellaceae While the possible contribution of other coinfecting noncultivable agents to the disease has not been ruled out in this study, the repertoire of virulence genes found in this organism may nevertheless explain some aspects of the associated pathology observed on the farm. The prevalence of this novel pathogen within pig populations is currently unknown. This finding is of particular importance for the pig industry, as this organism can have a serious impact on the health of these animals.
Collapse
|