1
|
Steensels M, Soldan C, Rauw F, Roupie V, Lambrecht B. Protective efficacy of classical vaccines and vaccination protocols against an exotic Newcastle disease virus genotype VII.2 in Belgian layer and broiler chickens. Poult Sci 2025; 104:104604. [PMID: 39657465 PMCID: PMC11683331 DOI: 10.1016/j.psj.2024.104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
Vaccination against Newcastle disease (ND) has been routinely implemented in the Belgian professional poultry sector since 1993, using genotype I and II vaccines. Despite this, an outbreak of genotype VII.2 avian paramyx-ovirus 1 (APMV-1) occurred in 2018, with 20 reported cases over the course of 3 months. Although the economic impact on the professional poultry sector was limited, this epizootic raised questions regarding the efficacy of implemented classical genotype I and II vaccines against phylogenetically distant exotic velogenic strains. The present study provides insights into the protective efficacy of standard vaccination programs applied in layer and broiler flocks against the introduction and transmission of this velogenic APMV-1 VII.2 strain. For fully field-vaccinated 26-week-old layer chickens, high levels of specific antibodies were measured at the time of the velogenic APMV-1 challenge, resulting in good clinical protection. However, despite the observed humoral immunity, viral excretion was not prevented, leading to transmission of the virus to non-infected sentinel birds. In fully field-vaccinated 4-week-old broiler chickens, assessment of vaccine uptake and coverage revealed low levels of ND specific antibodies despite double vaccination at day 1 and day 14. Consequently, poor protection against velogenic APMV-1 infection was observed, with both clinical signs and viral excretion occurring in both infected and sentinel birds. This study demonstrates that the introduction of velogenic APMV-1 VII.2 can lead to its dissemination among the Belgian avian poultry population despite the implementation of standard vaccination.
Collapse
Affiliation(s)
- Mieke Steensels
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Uccle, Brussels 1180, Belgium.
| | - Colas Soldan
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Uccle, Brussels 1180, Belgium; Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Fabienne Rauw
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Uccle, Brussels 1180, Belgium
| | - Virginie Roupie
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Uccle, Brussels 1180, Belgium
| | - Bénédicte Lambrecht
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Uccle, Brussels 1180, Belgium
| |
Collapse
|
2
|
Kamal MAM, Atef M, Khalf MA, Ahmed ZAM. Newcastle viral disease causation web correlations with laying hen productivity. Sci Rep 2024; 14:16021. [PMID: 38992055 PMCID: PMC11239807 DOI: 10.1038/s41598-024-65854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Environmental conditions profoundly impact the health, welfare, and productivity of laying hens in commercial poultry farming. We investigated the association between microclimate variations, production indices, and histopathological responses to accidental Newcastle disease virus (NDV) infection within a controlled closed-house system. The study was conducted over seven months in a laying hen facility in Cairo, Egypt. Microclimate measurements included temperature, relative humidity (RH%), air velocity (AV), and the temperature humidity index (THI) that were obtained from specific locations on the front and back sides of the facility. Productivity indices, including the egg production percentage (EPP), egg weight (EW), average daily feed intake, and feed conversion ratio, were assessed monthly. During an NDV outbreak, humoral immune responses, gross pathology, and histopathological changes were evaluated. The results demonstrated significant (p < 0.05) variations in EPP and EW between the front and back sides except in April and May. AV had a significant (p = 0.006) positive effect (Beta = 0.346) on EW on the front side. On the back side, AV had a significant (p = 0.001) positive effect (Beta = 0.474) on EW, while it negatively influenced (p = 0.027) EPP (Beta = - 0.281). However, temperature, RH%, and THI had no impact and could not serve as predictors for EPP or EW on either farm side. The humoral immune response to NDV was consistent across microclimates, highlighting the resilience of hens. Histopathological examination revealed characteristic NDV-associated lesions, with no significant differences between the microclimates. This study underscores the significance of optimizing microclimate conditions to enhance laying performance by providing tailored environmental management strategies based on seasonal variations, ensuring consistent airflow, particularly near cooling pads and exhaust fans, and reinforcing the importance of biosecurity measures under field challenges with continuous monitoring and adjustment.
Collapse
Affiliation(s)
| | - Mohamed Atef
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - M A Khalf
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Zakia A M Ahmed
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
3
|
Adam FEA, Zhao X, Guan Z, Chang Z, Thrusfield M, Lu K, El Tigani-Asil ETA, Terab AMA, Ismael M, Tong L, Prince-Theodore DW, Luo C, Xiao S, Wang X, Liu H, Yang Z. Simultaneous Expression of Chicken Granulocyte Monocyte Colony-Stimulating Factor and the Hemagglutinin-Neuraminidase Epitope of the Virulent Newcastle Disease Virus Genotype VII C22 Strain in a Functional Synthetic Recombinant Adenovirus as a Genotype-Matched Vaccine with Potential Antiviral Activity. Microbiol Spectr 2023; 11:e0402422. [PMID: 37036344 PMCID: PMC10269747 DOI: 10.1128/spectrum.04024-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/18/2023] [Indexed: 04/11/2023] Open
Abstract
When it comes to the prevention of clinical signs and mortality associated with infection of the Newcastle disease virus (NDV), vaccination has been very effective. However, recent evidence has proven that more highly virulent strains are emerging that bypass existing immune protection and pose a serious threat to the global poultry industry. Here, a novel rescued adenovirus 5-coexpressed chicken granulocyte monocyte colony-stimulating factor (ChGM-CSF) bio-adjuvant and C22-hemagglutinin-neuraminidase (HN) boosted chickens' immunological genetic resistance and thus improved the immunological effectiveness of the critical new-generation vaccine in vitro and in vivo. Accordingly, the hemagglutination inhibition (HI) titers (log2) of the recombinant adenovirus (rAdv)-ChGM-CSF-HN-immunized chickens had greater, more persistent, and longer-lasting NDV-specific antibodies than the La Sota and rAdv-HN-inoculated birds. Moreover, humoral and adaptive immunological conditions were shown to be in harmony after rAdv-ChGM-CSF-HN inoculation and uniformly enhanced the expression of alpha interferon (IFN-α), IFN-β, IFN-γ, interleukin-1β (IL-1β), IL-2, IL-16, IL-18, and IL-22. Postchallenge, the control challenge (CC), wild-type adenovirus (wtAdv), and rAdv-ChGM-CSF groups developed unique NDV clinical manifestations, significant viral shedding, high tissue viral loads, gross and microscopic lesions, and 100% mortality within 7 days. The La Sota, rAdv-HN, and rAdv-ChGM-CSF-HN groups were healthy and had 100% survival rates. The rAdv-ChGM-CSF-HN group swiftly regulated and stopped viral shedding and had lower tissue viral loads than all groups at 5 days postchallenge (dpc). Thus, the antiviral activity of ChGM-CSF offered robust immune protection in the face of challenge and reduced viral replication convincingly. Our advance innovation concepts, combining ChGM-CSF with a field-circulating strain epitope, could lead to the development of a safe, genotype-matched, universal transgenic vaccine that could eradicate the disease globally, reducing poverty and food insecurity. IMPORTANCE We studied the biological characterization of the developed functional synthetic recombinant adenoviruses, which showed a high degree of safety, thermostability, and genetic stability for up to 20 passages. It was demonstrated through both in vitro and in vivo testing that the immunogenicity of the proposed vaccine, which uses the T2A peptide from the Thosea asigna virus capsid protein supported by glycine and serine, helps with efficiency to generate a multicistronic vector, enables expression of two functional proteins in rAdv-ChGM-CSF-HN, and is superior to that of comparable vaccines. Additionally, adenovirus can be used to produce vaccines matching the virulent field-circulating strain epitope. Because there is no preexisting human adenoviral immunity detected in animals, the potency of adenoviral vaccines looks promising. Also, it ensures that the living vector does not carry the resistance gene that codes for the kanamycin antibiotic. Accordingly, a human recombinant adenoviral vaccine that has undergone biological improvements is beneficial and important.
Collapse
Affiliation(s)
- Fathalrhman Eisa Addoma Adam
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Department of Preventive Medicine and Public Health, Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
| | - Xueliang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhao Guan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhengwu Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Michael Thrusfield
- Veterinary Clinical Sciences Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, United Kingdom
| | - Kejia Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - El Tigani Ahmed El Tigani-Asil
- Veterinary Laboratories Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Abdelnasir Mohammed Adam Terab
- Veterinary Laboratories Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Mohamedelfateh Ismael
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Lina Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | | | - Chen Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Hassan MSH, Abdul-Careem MF. Avian Viruses that Impact Table Egg Production. Animals (Basel) 2020; 10:E1747. [PMID: 32993040 PMCID: PMC7601732 DOI: 10.3390/ani10101747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023] Open
Abstract
Eggs are a common source of protein and other nutrient components for people worldwide. Commercial egg-laying birds encounter several challenges during the long production cycle. An efficient egg production process requires a healthy bird with a competent reproductive system. Several viral pathogens that can impact the bird's health or induce reversible or irreversible lesions in the female reproductive organs adversely interfere with the egg industry. The negative effects exerted by viral diseases create a temporary or permanent decrease in egg production, in addition to the production of low-quality eggs. Several factors including, but not limited to, the age of the bird, and the infecting viral strain and part of reproductive system involved contribute to the form of reproductive disease encountered. Advanced methodologies have successfully elucidated some of the virus-host interactions relevant to the hen's reproductive performance, however, this branch needs further research. This review discusses the major avian viral infections that have been reported to adversely affect egg productivity and quality and aims to summarize the current understanding of the mechanisms that underlie the observed negative effects.
Collapse
Affiliation(s)
- Mohamed S. H. Hassan
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
5
|
Bello MB, Mahamud SNA, Yusoff K, Ideris A, Hair-Bejo M, Peeters BPH, Omar AR. Development of an Effective and Stable Genotype-Matched Live Attenuated Newcastle Disease Virus Vaccine Based on a Novel Naturally Recombinant Malaysian Isolate Using Reverse Genetics. Vaccines (Basel) 2020; 8:vaccines8020270. [PMID: 32498342 PMCID: PMC7349954 DOI: 10.3390/vaccines8020270] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Genotype VII Newcastle disease viruses are associated with huge economic losses in the global poultry industry. Despite the intensive applications of vaccines, disease outbreaks caused by those viruses continue to occur frequently even among the vaccinated poultry farms. An important factor in the suboptimal protective efficacy of the current vaccines is the genetic mismatch between the prevalent strains and the vaccine strains. Therefore, in the present study, an effective and stable genotype-matched live attenuated Newcastle disease virus (NDV) vaccine was developed using reverse genetics, based on a recently isolated virulent naturally recombinant NDV IBS025/13 Malaysian strain. First of all, the sequence encoding the fusion protein (F) cleavage site of the virus was modified in silico from virulent polybasic (RRQKRF) to avirulent monobasic (GRQGRL) motif. The entire modified sequence was then chemically synthesized and inserted into pOLTV5 transcription vector for virus rescue. A recombinant virus termed mIBS025 was successfully recovered and shown to be highly attenuated based on OIE recommended pathogenicity assessment indices. Furthermore, the virus was shown to remain stably attenuated and retain the avirulent monobasic F cleavage site after 15 consecutive passages in specific-pathogen-free embryonated eggs and 12 passages in one-day-old chicks. More so, the recombinant virus induced a significantly higher hemagglutination inhibition antibody titre than LaSota although both vaccines fully protected chicken against genotype VII NDV induced mortality and morbidity. Finally, mIBS025 was shown to significantly reduce both the duration and quantity of cloacal and oropharyngeal shedding of the challenged genotype VII virus compared to the LaSota vaccine. These findings collectively indicate that mIBS025 provides a better protective efficacy than LaSota and therefore can be used as a promising vaccine candidate against genotype VII NDV strains.
Collapse
Affiliation(s)
- Muhammad Bashir Bello
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia; (M.B.B.); (S.N.A.M.); (K.Y.); (A.I.); (M.H.-B.)
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University PMB 2346 Sokoto, Nigeria
- Center for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346 Sokoto, Nigeria
| | - Siti Nor Azizah Mahamud
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia; (M.B.B.); (S.N.A.M.); (K.Y.); (A.I.); (M.H.-B.)
| | - Khatijah Yusoff
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia; (M.B.B.); (S.N.A.M.); (K.Y.); (A.I.); (M.H.-B.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Aini Ideris
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia; (M.B.B.); (S.N.A.M.); (K.Y.); (A.I.); (M.H.-B.)
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohd Hair-Bejo
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia; (M.B.B.); (S.N.A.M.); (K.Y.); (A.I.); (M.H.-B.)
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Ben P. H. Peeters
- Department of Virology, Wageningen Bioveterinary Research, POB 65, NL8200 Lelystad, The Netherlands;
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia; (M.B.B.); (S.N.A.M.); (K.Y.); (A.I.); (M.H.-B.)
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Correspondence:
| |
Collapse
|
6
|
Li SY, You GJ, Du JT, Xia J, Wen YP, Huang XB, Zhao Q, Han XF, Yan QG, Wu R, Cao SJ, Huang Y. A class Ⅰ lentogenic newcastle disease virus strain confers effective protection against the prevalent strains. Biologicals 2019; 63:74-80. [PMID: 31753578 DOI: 10.1016/j.biologicals.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022] Open
Abstract
The traditional vaccine strains, such as LaSota, do not completely prevent the shedding of NDV. An ideal vaccine which could not only prevent the clinical signs, but significantly reduce the shedding of NDV is urgently needed for the eradication of ND. In this study, an NDV isolate APMV-1/Chicken/China (SC)/PT3/2016 (hereafter referred as PT3) was identified as a class Ⅰ NDV and a lentogenic strain. The antigenic relationship between PT3 and 3 other NDV strains, including vaccine strain LaSota and 2 prevalent genotype Ⅶd and Ⅵb strains were analyzed. The protective efficacy of PT3 and LaSota against challenge with genotype Ⅶd and Ⅵb strains were assessed. The antigenic analysis result showed that 4 strains belong to the single serotype and the PT3 antiserum exhibited the highest HI titer against 3 other NDV strains. The results of protective efficacy showed that both of LaSota and PT3 could provide 100% survivability for infected chickens. However, PT3 performed better in inducing higher humoral responses and reducing virus shedding than the LaSota strain. Lentogenic strains from Class I NDV appear to be promising vaccine candidates for the control of ND, and allows for the easy discrimination of field NDV and vaccine strains.
Collapse
Affiliation(s)
- Shu-Yun Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Guo-Jin You
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Ji-Teng Du
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Jing Xia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Yi-Ping Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Xiao-Bo Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Qing Zhao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Xin-Feng Han
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Qi-Gui Yan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Rui Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - San-Jie Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Yong Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
7
|
Role of cytosine-phosphate-guanosine-Oligodeoxynucleotides (CpG ODNs) as adjuvant in poultry vaccines. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933918000508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Awad NFS, Abd El-Hamid MI, Hashem YM, Erfan AM, Abdelrahman BA, Mahmoud HI. Impact of single and mixed infections with Escherichia coli and Mycoplasma gallisepticum on Newcastle disease virus vaccine performance in broiler chickens: an in vivo perspective. J Appl Microbiol 2019; 127:396-405. [PMID: 31075179 DOI: 10.1111/jam.14303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/11/2019] [Accepted: 04/25/2019] [Indexed: 11/26/2022]
Abstract
AIMS This study was designed to investigate, in an in vivo setting, the effects of single and combined infections with either Mycoplasma gallisepticum (MG) and/or Escherichia coli on the chicken immune response induced by Newcastle disease virus (NDV) vaccine. METHODS AND RESULTS Humoral immunity was measured through detection of NDV antibody and anti-NDV IgG titres using haemagglutination-inhibition test and enzyme-linked immunosorbent assay, respectively. In addition, the expression levels of pro-inflammatory cytokines' genes (interleukin (IL) 6, IL4 and interferon (IFN) γ) were analysed using quantitative reverse transcription PCR. Significant (P < 0·05) results in all immunological parameters were detected in the vaccinated noninfected chicken group in comparison with those in groups exposed to bacterial infections. Bacterial infection along with vaccination hampered the NDV antibodies production and reduced the vaccine upregulated cytokine genes. The vaccinated mixed infection group reported lower antibody titres and cytokines expression levels compared to those in the single infection groups. All the previously enhanced immunological parameters reflected the maximum protection post challenge with velogenic viscerotropic NDV in the vaccinated noninfected chicken group. CONCLUSIONS These findings provide novel insights into the immunosuppression activities of MG and E. coli infection in chickens vaccinated against NDV. SIGNIFICANCE AND IMPACT OF THE STUDY This study hopes to provide a better insight to the immunosuppressive action of bacterial pathogens in chickens. This will help to improve biosecurity strategies during NDV vaccination in the future.
Collapse
Affiliation(s)
- N F S Awad
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - M I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Y M Hashem
- Department of Mycoplasma Research, Animal Health Research Institute, Giza, Egypt
| | - A M Erfan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza, Egypt
| | - B A Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - H I Mahmoud
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Truncated chicken MDA5 enhances the immune response to inactivated NDV vaccine. Vet Immunol Immunopathol 2018; 208:44-52. [PMID: 30712791 DOI: 10.1016/j.vetimm.2018.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022]
Abstract
Melanoma Differentiation-Associated protein 5 (MDA5) is a cytoplasmic sensor for viral invasion and plays an important role in regulation of the immune response against Newcastle disease virus (NDV) in chickens. MDA5 was used as an adjuvant to enhance the humoral immune response against influenza virus. In the current study, truncated chicken MDA5 [1-483 aa, chMDA5(483aa)] expressed by recombinant adenovirus was administered to specific-pathogen-free (SPF) chickens to improve the immune response induced by inactivated NDV vaccine. A total of 156 SPF chickens were divided into six groups, and after two rounds of immunization, the humoral immune response, cell-mediated immune (CMI) response and the protective efficacy of the vaccines against NDV challenge were evaluated. The results showed that co-administration of chMDA5(483aa) expressed by adenovirus increased the NDV-specific antibody response by 1.7 times and chickens received chMDA5(483aa) also gained a higher level of CMI response. Consistently, the protective efficacy of the inactivated NDV vaccine against virulent NDV (vNDV) challenge was improved by co-administrate with chMDA5(483aa), as indicated by the reduced morbidity and pathological lesions, lower levels of viral load in organs and reduced virus shedding. Our study demonstrated that chMDA5(433aa) expressed by adenovirus could enhance the immune efficacy of inactivated NDV vaccine in chickens and could be a potential adjuvant candidate in developing chicken NDV vaccines.
Collapse
|
10
|
Awais MM, Akhtar M, Anwar MI, Khaliq K. Evaluation of Saccharum officinarum L. bagasse-derived polysaccharides as native immunomodulatory and anticoccidial agents in broilers. Vet Parasitol 2018; 249:74-81. [DOI: 10.1016/j.vetpar.2017.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 10/18/2022]
|
11
|
Wang X, Wang X, Jia Y, Wang C, Han Q, Lu ZH, Yang Z. Adenoviral-expressed recombinant granulocyte monocyte colony-stimulating factor (GM-CSF) enhances protective immunity induced by inactivated Newcastle Disease Virus (NDV) vaccine. Antiviral Res 2017; 144:322-329. [PMID: 28698014 DOI: 10.1016/j.antiviral.2017.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 06/30/2017] [Accepted: 07/07/2017] [Indexed: 11/30/2022]
Abstract
Although vaccination has been hugely successful in protecting birds against infection by the New castle disease virus (NDV), newly-emerged highly virulent strains have been found to overcome established immune protection and threaten the poultry industry. The need to improve the immunization efficacy is, therefore, urgent. Here, we tested the potential immunostimulatory adjuvant activity of the adenoviral-expressed recombinant chicken granulocyte monocyte colony stimulating factor (rchGM-CSF) in an inactivated Newcastle Disease Virus (NDV) vaccine. 126 commercial layer chicks, divided into six groups, were first vaccinated at day 7, followed by a subsequent boost and later an intramuscular challenge at day 21 and 35 respectively. rchGM-CSF expressed by adenovirus raised NDV-specific hemagglutinin-inhibition (HI) titers from 10 to 12 (log2) and significantly upregulated the production of interferon α/β/γ (IFN-α/β/γ), interleukin-4 (IL-4) and major histocompatibility complex II (MHC-II) in spleens. Crucially, chicks inoculated with the inactivated NDV vaccine plus the rchGM-CSF adjuvant displayed only mild clinical signs, lower tissue viral loads, fewer tissue lesions, and decreased mortality and viral shedding than those in the group immunized with the vaccine alone. Our present work has demonstrated that chicken GM-CSF may act as an enhancer in the orchestration of host immune responses induced by the inactivated NDV vaccine. The molecule, expressed by an adenovirus, has the potential to be used as an immune adjuvant to improve protection by NDV vaccination.
Collapse
Affiliation(s)
- Xinglong Wang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiangwei Wang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yanqing Jia
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chongyang Wang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qinqsong Han
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zen H Lu
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Brunei Darussalam
| | - Zengqi Yang
- Department of Avian Disease, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|