1
|
Li H, Zhang R. The role of calcium ions and the transient receptor potential vanilloid (TRPV) channel in bone remodelling and orthodontic tooth movement. Mol Biol Rep 2025; 52:297. [PMID: 40063148 DOI: 10.1007/s11033-025-10399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/27/2025] [Indexed: 05/13/2025]
Abstract
During orthodontic treatment, the application of orthodontic forces to the periodontal tissues leads to the activation of osteoblasts and osteoclasts, which in turn induces bone remodelling and tooth movement. Calcium is a biologically essential element that exists in the internal environment and cells as calcium ions(Ca2+). The concentration of extracellular Ca2+ can affect the activity and function of osteoblasts and osteoclasts, as well as regulate bone remodelling. In the cell, calcium ions play a crucial role in cell signal transduction, acting as a second messenger. The orthodontic force increases intracellular Ca2+ concentration through a series of cascade reactions that affect the differentiation and apoptosis of osteoblasts and osteoclasts. Calcium channels on the cell membrane are crucial for intracellular and extracellular calcium transport. Transient Receptor Potential Vanilloid (TRPV) is a calcium ion permeable and mechanosensitive receptor comprising six calcium channel subtypes, TRPV1-6. This review will focus on the crucial role of Ca2+ in bone metabolism and provide a comprehensive description of the function and mechanism of each specific TRPV channel subtype in orthodontic tooth movement and bone remodelling.
Collapse
Affiliation(s)
- Haoyu Li
- Orthodontic Department, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Fanjiacun Road 9, Fengtai District, Beijing, 100070, China
| | - Ruofang Zhang
- Orthodontic Department, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Fanjiacun Road 9, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
2
|
Zhai ZH, Li J, You Z, Cai Y, Yang J, An J, Zhao DP, Wang HJ, Dou MM, Du R, Qin J. Feline umbilical cord-derived mesenchymal stem cells: isolation, identification, and antioxidative stress role through NF-κB signaling pathway. Front Vet Sci 2023; 10:1203012. [PMID: 37303730 PMCID: PMC10249476 DOI: 10.3389/fvets.2023.1203012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
At present, the differentiation potential and antioxidant activity of feline umbilical cord-derived mesenchymal stem cells (UC-MSCs) have not been clearly studied. In this study, feline UC-MSCs were isolated by tissue adhesion method, identified by flow cytometry detection of cell surface markers (CD44, CD90, CD34, and CD45), and induced differentiation toward osteogenesis and adipogenesis in vitro. Furthermore, the oxidative stress model was established with hydrogen peroxide (H2O2) (100 μM, 300 μM, 500 μM, 700 μM, and 900 μM). The antioxidant properties of feline UC-MSCs and feline fibroblasts were compared by morphological observation, ROS detection, cell viability via CCK-8 assay, as well as oxidative and antioxidative parameters via ELISA. The mRNA expression of genes related to NF-κB pathway was detected via quantitative real-time polymerase chain reaction, while the levels of NF-κB signaling cascade-related proteins were determined via Western Blot. The results showed that feline UC-MSCs highly expressed CD44 and CD90, while negative for CD34 and CD45 expression. Feline UC-MSCs cultured under osteogenic and adipogenic conditions showed good differentiation capacity. After being exposed to different concentrations of H2O2 for eight hours, feline UC-MSCs exhibited the significantly higher survival rate than feline fibroblasts. A certain concentration of H2O2 could up-regulate the activities of SOD2 and GSH-Px in feline UC-MSCs. The expression levels of p50, MnSOD, and FHC mRNA in feline UC-MSCs stimulated by 300 μM and 500 μM H2O2 significantly increased compared with the control group. Furthermore, it was observed that 500 μM H2O2 significantly enhanced the protein levels of p-IκB, IκB, p-p50, p50, MnSOD, and FHC, which could be reversed by BAY 11-7,082, a NF-κB signaling pathway inhibitor. In conclusion, it was confirmed that feline UC-MSCs, with good osteogenesis and adipogenesis abilities, had better antioxidant property which might be related to NF-κB signaling pathway. This study lays a foundation for the further application of feline UC-MSCs in treating the various inflammatory and oxidative injury diseases of pets.
Collapse
Affiliation(s)
- Zhu-Hui Zhai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jun Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhao You
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yang Cai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jie Yang
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jie An
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Di-Peng Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - He-Jie Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Min-Min Dou
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Rong Du
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jian Qin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
- Center of Experiment Teaching, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
3
|
Woloszyk A, Aguilar L, Perez L, Salinas EL, Glatt V. Biomimetic hematoma delivers an ultra-low dose of rhBMP-2 to successfully regenerate large femoral bone defects in rats. BIOMATERIALS ADVANCES 2023; 148:213366. [PMID: 36905826 DOI: 10.1016/j.bioadv.2023.213366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Successful repair of large bone defects remains a clinical challenge. Following fractures, a bridging hematoma immediately forms as a crucial step that initiates bone healing. In larger bone defects the micro-architecture and biological properties of this hematoma are compromised, and spontaneous union cannot occur. To address this need, we developed an ex vivo Biomimetic Hematoma that resembles naturally healing fracture hematoma, using whole blood and the natural coagulants calcium and thrombin, as an autologous delivery vehicle for a very reduced dose of rhBMP-2. When implanted into a rat femoral large defect model, complete and consistent bone regeneration with superior bone quality was achieved with 10-20× less rhBMP-2 compared to that required with the collagen sponges currently used. Moreover, calcium and rhBMP-2 demonstrated a synergistic effect enhancing osteogenic differentiation, and fully restored mechanical strength 8 weeks after surgery. Collectively, these findings suggest the Biomimetic Hematoma provides a natural reservoir for rhBMP-2, and that retention of the protein within the scaffold rather than its sustained release might be responsible for more robust and rapid bone healing. Clinically, this new implant, using FDA-approved components, would not only reduce the risk of adverse events associated with BMPs, but also decrease treatment costs and nonunion rates.
Collapse
Affiliation(s)
- Anna Woloszyk
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Leonardo Aguilar
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Louis Perez
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Emily L Salinas
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Vaida Glatt
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| |
Collapse
|
4
|
Suspension of Amorphous Calcium Phosphate Nanoparticles Impact Commitment of Human Adipose-Derived Stem Cells In Vitro. BIOLOGY 2021; 10:biology10070675. [PMID: 34356530 PMCID: PMC8301486 DOI: 10.3390/biology10070675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
Amorphous calcium phosphate (aCaP) nanoparticles may trigger the osteogenic commitment of adipose-derived stem cells (ASCs) in vitro. The ASCs of three human donors are investigated using basal culture medium DMEM to either 5 or 50 µg/mL aCaP nanoparticles suspension (control: no nanoparticles). After 7 or 14 days, stem cell marker genes, as well as endothelial, osteogenic, chondrogenic, and adipogenic genes, are analyzed by qPCR. Free calcium and phosphate ion concentrations are assessed in the cell culture supernatant. After one week and 5 µg/mL aCaP, downregulation of osteogenic markers ALP and Runx2 is found, and averaged across the three donors. Our results show that after two weeks, ALP is further downregulated, but Runx2 is upregulated. Endothelial cell marker genes, such as CD31 and CD34, are upregulated with 50 µg/mL aCaP and a 2-week exposure. Inter-donor variability is high: Two out of three donors show a significant upregulation of ALP and Runx2 at day 14 with 50 µg/mL aCaP compared to 5 µg/mL aCaP. Notably, all changes in stem cell commitment are obtained in the absence of an osteogenic medium. While the chemical composition of the culture medium and the saturation status towards calcium phosphate phases remain approximately the same for all conditions, gene expression of ASCs changes considerably. Hence, aCaP nanoparticles show the potential to trigger osteogenic and endothelial commitment in ASCs.
Collapse
|
5
|
Isolation and characterization of bone marrow-derived mesenchymal stem cells in Xenopus laevis. Stem Cell Res 2021; 53:102341. [PMID: 33892293 DOI: 10.1016/j.scr.2021.102341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/13/2021] [Accepted: 04/04/2021] [Indexed: 11/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that exist in mesenchymal tissues such as bone marrow and are able to differentiate into osteocytes, chondrocytes, and adipocytes. MSCs are generally collected as adherent cells on a plastic dish, and are positive for markers such as CD44, CD73, CD90, CD105 and CD166, and negative for CD11b, CD14, CD19, CD31, CD34, CD45, CD79a and HLA-DR. MSCs have been established from many kinds of mammals, but MSCs from amphibians have not yet been reported. We cultured adherent cells from the bone marrow of Xenopus laevis by modifying the protocol for culturing mammalian MSCs. The morphology of these cells was similar to that of mammalian MSCs. The amphibian MSCs were positive for cd44, cd73, cd90 and cd166, and negative for cd11b, cd14, cd19, cd31, cd34, cd45, cd79a and hla-dra. Moreover, they could be induced to differentiate into osteocyte-, chondrocyte-, and adipocyte-lineage cells by cytokine induction systems that were similar to those used for mammalian MSC differentiation. Thus, they are considered to be similar to mammalian MSCs. Unlike mammals, amphibians have high regenerative capacity. The findings from the present study will allow for future research to reveal how Xenopus MSCs are involved in the amphibian regenerative capacity and to elucidate the differences in the regenerative capacity between mammals and amphibians.
Collapse
|
6
|
Elashry MI, Baulig N, Wagner AS, Klymiuk MC, Kruppke B, Hanke T, Wenisch S, Arnhold S. Combined macromolecule biomaterials together with fluid shear stress promote the osteogenic differentiation capacity of equine adipose-derived mesenchymal stem cells. Stem Cell Res Ther 2021; 12:116. [PMID: 33579348 PMCID: PMC7879632 DOI: 10.1186/s13287-021-02146-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Combination of mesenchymal stem cells (MSCs) and biomaterials is a rapidly growing approach in regenerative medicine particularly for chronic degenerative disorders including osteoarthritis and osteoporosis. The present study examined the effect of biomaterial scaffolds on equine adipose-derived MSC morphology, viability, adherence, migration, and osteogenic differentiation. Methods MSCs were cultivated in conjunction with collagen CultiSpher-S Microcarrier (MC), nanocomposite xerogels B30 and combined B30 with strontium (B30Str) biomaterials in osteogenic differentiation medium either under static or mechanical fluid shear stress (FSS) culture conditions. The data were generated by histological means, live cell imaging, cell viability, adherence and migration assays, semi-quantification of alkaline phosphatase (ALP) activity, and quantification of the osteogenic markers runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP) expression. Results The data revealed that combined mechanical FSS with MC but not B30 enhanced MSC viability and promoted their migration. Combined osteogenic medium with MC, B30, and B30Str increased ALP activity compared to cultivation in basal medium. Osteogenic induction with MC, B30, and B30Str resulted in diffused matrix mineralization. The combined osteogenic induction with biomaterials under mechanical FSS increased Runx2 protein expression either in comparison to those cells cultivated in BM or those cells induced under static culture. Runx2 and ALP expression was upregulated following combined osteogenic differentiation together with B30 and B30Str regardless of static or FSS culture. Conclusions Taken together, the data revealed that FSS in conjunction with biomaterials promoted osteogenic differentiation of MSCs. This combination may be considered as a marked improvement for clinical applications to cure bone defects. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02146-7.
Collapse
Affiliation(s)
- Mohamed I Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392, Giessen, Germany.
| | - Nadine Baulig
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392, Giessen, Germany
| | - Alena-Svenja Wagner
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392, Giessen, Germany.,Institute of Veterinary Physiology and Biochemistry, Justus Liebig University of Giessen, 35392, Giessen, Germany
| | - Michele C Klymiuk
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392, Giessen, Germany
| | - Benjamin Kruppke
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Thomas Hanke
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392, Giessen, Germany
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Frankfurter Str. 98, 35392, Giessen, Germany
| |
Collapse
|
7
|
Elashry MI, Gegnaw ST, Klymiuk MC, Wenisch S, Arnhold S. Influence of mechanical fluid shear stress on the osteogenic differentiation protocols for Equine adipose tissue-derived mesenchymal stem cells. Acta Histochem 2019; 121:344-353. [PMID: 30808518 DOI: 10.1016/j.acthis.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 01/07/2023]
Abstract
Cell-based therapies have become a promising approach to promote tissue regeneration and the treatment of musculoskeletal disorders. Bone regeneration maintains bone homeostasis, mechanical stability and physical performance. Mechanical stimulation showed to induce stem cell differentiation into the osteogenic fate. However, the effect of various osteogenic protocols on the osteogenic commitment of equine adipose-derived stem cells is not fully elucidated. Here we examined the influence of fluid-based shear stress (FSS) via mechanical rocking to assess whether mechanical stimulation promotes osteogenic differentiation of equine adipose-derived stem cells (ASCs). ASCs were induced into osteogenic fate using osteogenic differentiation medium (ODM) protocol or additional supplementation of 5 mM CaCl2 and 7.5 mM CaCl2 protocol compared to cells cultivated in basal medium (BM) up to 21 day. The ASCs proliferation pattern was evaluated using the sulforhodamine B (SRB) protein assay. Osteogenic differentiation examined via semi-quantification of alizarin red staining (ARS) and alkaline phosphatase activity (ALP) as well as, via quantification of osteocalcin (OC), alkaline phosphatase (ALP), osteopontin (OP), and collagen type-1 (COL1) gene expression using RT-qPCR. We show that mechanical FSS increased the proliferation pattern of ASCs compared to the static conditions. Mechanical FSS together with 5 mM CaCl2 and 7.5 mM CaCl2 promoted osteogenic nodule formation and increased ARS intensity compared to the standard osteogenic protocols. We observed that combined mechanical FSS with ODM protocol increase ALP activity compared to static culture conditions. We report that ALP and OC osteogenic markers expression were upregulated under mechanical FSS culture condition particularly with the ODM protocol. Taken together, it can be assumed that mechanical stress using FSS promotes the efficiency of the osteogenic differentiation protocols of ASCs through independent mechanisms.
Collapse
Affiliation(s)
- Mohamed I Elashry
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392, Giessen, Germany; Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura, 35516, Egypt.
| | - Shumet T Gegnaw
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392, Giessen, Germany; Institute des Neurosciences Cellulaires et Integratives (INCI), University of Strasbourg, 67084, Strasbourg, France
| | - Michele C Klymiuk
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392, Giessen, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392, Germany
| | - Stefan Arnhold
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392, Giessen, Germany
| |
Collapse
|