1
|
de Almeida AM, Latorre MA, Alvarez-Rodriguez J. Productive, Physiological, and Environmental Implications of Reducing Crude Protein Content in Swine Diets: A Review. Animals (Basel) 2024; 14:3081. [PMID: 39518804 PMCID: PMC11544889 DOI: 10.3390/ani14213081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Pig production is one of the most important providers of high-quality proteins and amino acids (AAs) to human nutrition. In this sector, feeding has an important economic and environmental impact. A strategy to reduce production costs and negative sustainability effects is reducing dietary crude protein (CP) contents with or without AA supplementation. This review addresses the different aspects related to this strategy, particularly the effects on growth performance and pork traits in piglets and growing and finishing pigs, as well as the physiological molecular mechanisms' underlying effects. Insight is also provided into the effects of dietary CP reduction on the productive performances of alternative pig production systems and breeding boars and sows. Finally, an overview is conducted on the effects of dietary CP reduction on ammonia, odor, and greenhouse gas emissions arising from pig production systems. Overall, CP reduction may lead to production losses, albeit they can be, to some extent, hindered by adequate AA supplementation. Losses are particularly relevant during the post-weaning phase, whereas in finishing pigs, it may bring additional benefits, such as high intramuscular fat contents in some markets or improved gut barrier function with benefits to the animals' health and welfare, as well as decreased ammonia emissions to the environment.
Collapse
Affiliation(s)
- André Martinho de Almeida
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria Angeles Latorre
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-Universidad de Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain;
| | - Javier Alvarez-Rodriguez
- Departamento de Ciencia Animal, Universidad de Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
2
|
Pearce SC, Nisley MJ, Kerr BJ, Sparks C, Gabler NK. Effects of dietary protein level on intestinal function and inflammation in nursery pigs. J Anim Sci 2024; 102:skae077. [PMID: 38504643 PMCID: PMC11015048 DOI: 10.1093/jas/skae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
High crude protein (CP; 21% to 26%) diets fed during the first 21 to 28 d postweaning are viewed negatively because of a perceived increase in the incidence rates of diarrhea due to increased intestinal protein fermentation and/or augmented enteric pathogen burden. This is thought to antagonize nursery pig health and growth performance. Therefore, our objective was to evaluate the impact of low vs. high dietary CP on 21-day postweaned pig intestinal function. Analyzed parameters included ex vivo intestinal barrier integrity (ileum and colon), ileal nutrient transport, tissue inflammation, and fecal DM. One hundred and twenty gilts and barrows (average body weight) were randomly assigned to one of two diets postweaning. Diets were fed for 21 d, in two phases. Phase 1 diets: low CP (17%) with a 1.4% standardized ileal digestible (SID) Lys (LCP), or high CP (24%) with a 1.4% SID Lysine (HCP). Phase 2: LCP (17%) and a 1.35% SID lysine, or HCP (24%) formulated to a 1.35% SID lysine. Pig growth rates, feed intakes, and fecal consistency did not differ (P > 0.05) due to dietary treatment. Six animals per treatment were euthanized for additional analyses. There were no differences in colonic epithelial barrier function as measured by transepithelial electrical resistance (TER) and fluorescein isothiocyanate (FITC)-dextran transport between treatments (P > 0.05). Interleukins (IL)-1α, IL-1β, IL-1ra, IL-2 IL-4, IL-6, and IL-12 were not different between treatments (P > 0.05). However, IL-8 and IL-18 were higher in HCP- vs. LCP-fed pigs (P < 0.05). There were no differences in fecal dry matter (DM; P > 0.05) between treatments. In the ileum, there was a tendency (P = 0.06) for TER to be higher in HCP-fed pigs, suggesting a more robust barrier. Interestingly, glucose and glutamine transport were decreased in HCP- vs. LCP-fed pigs (P < 0.05). FITC-dextran transport was not different between treatments (P > 0.05). There were also no differences in ileal cytokine concentrations between diets (P > 0.05). Taken together, the data show that low CP does not negatively impact colonic barrier function, fecal DM, or inflammation. In contrast, ileal barrier function and nutrient transport were altered, suggesting a regional effect of diet on overall intestinal function.
Collapse
Affiliation(s)
- Sarah C Pearce
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA, USA
| | | | - Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA, USA
| | | | | |
Collapse
|
3
|
Dong L, Li Y, Zhang Y, Zhang Y, Ren J, Zheng J, Diao J, Ni H, Yin Y, Sun R, Liang F, Li P, Zhou C, Yang Y. Effects of organic zinc on production performance, meat quality, apparent nutrient digestibility and gut microbiota of broilers fed low-protein diets. Sci Rep 2023; 13:10803. [PMID: 37402861 DOI: 10.1038/s41598-023-37867-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
The high cost of feed and nitrogen pollution caused by high-protein diets have become major challenges restricting sustainable development in China's animal husbandry sector. Properly reducing protein levels and improving protein utilization in feed are effective approaches to solving this problem. To determine the optimal dose of methionine hydroxyl analogue chelated zinc (MHA-Zn) in broiler diets with a 1.5% reduction in crude protein (CP), a total of 216 1-day-old broilers were randomly assigned into 4 groups (each group consisted of 3 replications with 18 broilers per replicate), and growth and development indexes were assessed after 42 days. The broilers in control group were fed a basic diet, whereas those in the three test groups were fed diets with a 1.5% reduction in CP. The results showed no significant difference in the edible parts of broilers between low-protein (LP) diet group (90 mg/kg MHA-Zn) and normal diet group (p > 0.05), and adding 90 mg/kg MHA-Zn to LP diet significantly improved ileum morphology and apparent total tract digestibility (ATTD) of nutrient (p < 0.01; p < 0.05). A 16S rRNA sequencing analysis indicated that supplementing the LP diet with 90 mg/kg MHA-Zn was adequate for production performance of broilers and promoted beneficial bacteria in the cecum (Lactobacillus, Butyricoccus, Oscillospira, etc.) (p < 0.01). In summary, adding an optimal dose of organic zinc (90 mg/kg MHA-Zn) in low protein diets led to enhanced production performance of broilers and optimized cecum microbiota. Additionally, the reduction of crude protein consumption in broiler production proved to be a cost-effective measure, while also mitigated nitrogen pollutant emissions in the environment.
Collapse
Affiliation(s)
- Liping Dong
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Yumei Li
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Yonghong Zhang
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Yan Zhang
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, 132109, China
| | - Jing Ren
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Jinlei Zheng
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Jizhe Diao
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Hongyu Ni
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Yijing Yin
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Ruihong Sun
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Fangfang Liang
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Peng Li
- International Trading (Shanghai) Co., Ltd., Shanghai, 200080, China
| | - Changhai Zhou
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China.
| | - Yuwei Yang
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China.
| |
Collapse
|
4
|
Tannic Acid Induces Intestinal Dysfunction and Intestinal Microbial Dysregulation in Brandt's Voles ( Lasiopodomys brandtii). Animals (Basel) 2023; 13:ani13040586. [PMID: 36830373 PMCID: PMC9951651 DOI: 10.3390/ani13040586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Brandt's vole (Lasiopodomys brandtii) is a small herbivorous mammal that feeds on plants rich in secondary metabolites (PSMs), including tannins. However, plant defense mechanisms against herbivory by Brandt's voles are not clearly established. This study aimed to investigate the effects of dietary tannic acid (TA) on the growth performance, intestinal morphology, digestive enzyme activities, cecal fermentation, intestinal barrier function, and gut microbiota in Brandt's voles. The results showed that TA significantly hindered body weight gain, reduced daily food intake, changed the intestinal morphology, reduced digestive enzyme activity, and increased the serum zonulin levels (p < 0.05). The number of intestinal goblet and mast cells and the levels of serum cytokines and immunoglobulins (IgA, IgG, TNF-α, IL-6, and duodenal SlgA) were all reduced by TA (p < 0.05). Moreover, TA altered β-diversity in the colonic microbial community (p < 0.05). In conclusion, the results indicate that TA could damage the intestinal function of Brandt's voles by altering their intestinal morphology, decreasing digestive ability and intestinal barrier function, and altering microbiota composition. Our study investigated the effects of natural PSMs on the intestinal function of wildlife and improved our general understanding of plant-herbivore interactions and the ecological role of PSMs.
Collapse
|
5
|
Wang Z, Shao D, Wu S, Song Z, Shi S. Heat stress-induced intestinal barrier damage and dimethylglycine alleviates via improving the metabolism function of microbiota gut brain axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114053. [PMID: 36084503 DOI: 10.1016/j.ecoenv.2022.114053] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Heat stress, a widely occurred in subtropical climate regions, causes ecosystem destruction, and intestine injury in humans and animals. As an important compound in the metabolic pathway of choline, dimethylglycine (DMG) shows anti-inflammatory effects. This study examines the beneficial effects of dietary DMG against heat stress-induced intestine injury and further explores the underlying molecular mechanisms using a broiler model. Here, we showed that DMG supplements exhibited positive effects to growth performance, as evidenced by the significantly increased body weight and feed conversion rate. These therapeutic effects attributed to repaired gut barrier integrity, increased content of anti-inflammatory cytokines IL-10, decreased content of pro-inflammatory cytokines IL-6, and down-regulated gene expression of the NF-κB signaling pathway. DMG treatment led to the reshaping of the gut microbiota composition, mainly increasing the short-chain fatty acid (SCFAs) strains such as Faecalibacterium, and Marvinbryantia. DMG treatment also increased two main members of SCFAs, including acetate acid and isobutyrate. Particularly, distinct effects were found which mediated the tryptophan metabolism in intestines such as increased tryptophan and 5-HT, which further alleviate the occurrence of intestinal barrier damage caused by heat stress. Additionally, DMG treatment promoted neuroendocrine function and stimulated the hypothalamic neurotransmitter metabolism by activating tryptophan metabolism in the hypothalamus. Overall, DMG supplementation effectively reduced the occurrence of intestinal inflammation induced by heat stress through modulating cecal microbial communities and improving the metabolism function of microbiota gut brain axis. Our findings revealed a novel mechanism by which gut microbiota could improve host health.
Collapse
Affiliation(s)
- Zhenxin Wang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China; Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China
| | - Shu Wu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China.
| |
Collapse
|
6
|
Lee J, González-Vega JC, Htoo JK, Yang C, Nyachoti CM. Effects of dietary protein content and crystalline amino acid supplementation patterns on growth performance, intestinal histomorphology, and immune response in weaned pigs raised under different sanitary conditions. J Anim Sci 2022; 100:skac285. [PMID: 36062846 PMCID: PMC9527300 DOI: 10.1093/jas/skac285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/02/2022] [Indexed: 11/12/2022] Open
Abstract
The aim of this experiment was to investigate the effects of dietary crude protein (CP) contents and crystalline amino acids (CAA) supplementation patterns on growth performance, intestinal histomorphology, and immune response in weaned pigs under clean (CSC) or unclean sanitary conditions (USC). A total of 144 weaned pigs (6.35 ± 0.63 kg body weight) were assigned to 6 treatments in a 3 × 2 factorial arrangement based on CP content and sanitary conditions using a randomized complete block design, giving 8 replicates per treatment with 3 pigs per pen. Pigs were fed one of three diets for 21 d: one high CP (HCP; 22%) and two low CP (LCP; 19%) diets supplemented with 9 indispensable AA or only 6 AA (Lys, Met, Thr, Trp, Val, and Ile) as CAA. The CSC room was washed weekly, whereas the USC room had sow manure spread in the pens and was not washed throughout the experiment. Body weight and feed disappearance were recorded weekly. Blood was sampled from 1 pig per pen weekly, and the same pig was euthanized for jejunal tissues sampling on day 21. Pigs raised under USC had reduced (P < 0.05) average daily gain (ADG) and gain to feed ratio (G:F) in week 2, but contrary results that greater (P < 0.05) ADG and G:F were found in pigs under USC in week 3. Overall, there was an interaction where G:F did not differ between HCP and LCP under CSC, however, LCP decreased (P < 0.05) G:F compared to HCP under USC. Pigs fed the HCP diet had higher (P < 0.05) fecal scores than those fed the LCP diets throughout the experiment. Pigs fed the LCP had higher (P < 0.05) villus height to crypt depth ratio than those fed the HCP. An interaction was observed where goblet cell density in the jejunum was higher (P < 0.05) in pigs fed LCP than HCP under CSC, but no difference was found between HCP and LCP under USC. Different CAA supplementation patterns did not influence both growth performance and histomorphology. Pigs raised under USC had greater (P < 0.05) plasma interleukin (IL)-10 and IL-6 concentrations and reduced (P < 0.05) plasma tumor necrosis factor-alpha concentration. Also, the LCP diets resulted in a greater (P < 0.05) plasma IL-10 concentration. In conclusion, overall growth performance did not differ between HCP and LCP under CSC, but LCP diets reduced G:F under USC. Feeding LCP diets to weaned pigs improved gut morphology under USC and ameliorated systemic inflammation induced by USC, whereas CAA supplementation patterns did not affect growth performance and gut morphology.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2Canada
| | | | - John Kyaw Htoo
- Evonik Operations GmbH, Rodenbacher Chaussee, Hanau-Wolfgang, Hessen 63457, Germany
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2Canada
| | | |
Collapse
|
7
|
Liu Y, Azad MAK, Zhao X, Zhu Q, Kong X. Dietary Crude Protein Levels Alter Diarrhea Incidence, Immunity, and Intestinal Barrier Function of Huanjiang Mini-Pigs During Different Growth Stages. Front Immunol 2022; 13:908753. [PMID: 35874746 PMCID: PMC9301461 DOI: 10.3389/fimmu.2022.908753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Huanjiang mini-pig is an indigenous pig breed in China; however, the optimal dietary crude protein (CP) levels for this pig breed during different growth stages has not been standardized yet. This study investigated the effects of different CP levels on diarrhea incidence, immunity, and intestinal barrier function in pigs. A total of 360 Huanjiang mini-pigs were assigned to three independent trials and fed the following CP diets: 5−10 kg stage, 14, 16, 18, 20, and 22%; 10−20 kg stage, 12, 14, 16, 18, and 20% and 20−30 kg stage, 10, 12, 14, 16, and 18%. In the 5−10 kg stage, the 22%; diet increased the plasma IL-1β, IL-6, IL-8, and TNF-α concentrations compared to the 14−20% diets and decreased IL-10 and TGF-β; however, these results were fluctuated in the later stages, including the decrease of IL-1β and IL-8 in the 20% group, TNF-α in the 18−20% groups, and the increase of IFN-γ in the 20% group at the 10−20 kg stage and the decrease of TNF-α in the 16% group at the 20−30 kg stage. The 20% diet increased the jejunal and ileal IL-10 concentration compared to the 14% diet at the 5−10 kg stage, as well as in the 16% diet compared to the 12% diet at the 10−20 kg stage. In addition, ileal IL-10 concentration was increased in the 16% diet compared to the 10, 12, and 18% diets at the 20−30 kg stage. Furthermore, the 18% diet at the 5−10 kg stage and the 16% diet at the 10−20 kg stage decreased jejunal IL-6 expression, whereas the 20% diet increased the TNF-α and IFN-γ at the 5−10 kg stage. The 20% diet increased the Claudin, Occludin, ZO-1, ZO-2, Mucin-1, and Mucin-20 expressions at the 5−10 kg stage, as well as TLR-2, TLR-4, and NF-κB in the 22 and 20% diets at the 5−10 and 10−20 kg stages, respectively. Collectively, these findings suggest optimal dietary CP levels of 16, 14, and 12% for Huanjiang mini-pigs during the 5−10, 10−20, and 20−30 kg growth stages, respectively; and provide the guiding significance of dietary CP levels for Huanjiang mini-pigs during different growth stages.
Collapse
Affiliation(s)
- Yating Liu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Md. Abul Kalam Azad
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xichen Zhao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Xiangfeng Kong,
| |
Collapse
|
8
|
Wang Z, Shao D, Kang K, Wu S, Zhong G, Song Z, Shi S. Low protein with high amino acid diets improves the growth performance of yellow feather broilers by improving intestinal health under cyclic heat stress. J Therm Biol 2022; 105:103219. [DOI: 10.1016/j.jtherbio.2022.103219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/22/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
|
9
|
Kinoshita Y, Takahashi H, Katsumata M. Circadian rhythms of the mRNA abundances of clock genes and glucose transporters in the jejunum of weanling-growing pigs. Vet Med Sci 2022; 8:1113-1118. [PMID: 35137560 PMCID: PMC9122404 DOI: 10.1002/vms3.746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Whether abundance of glucose transporter mRNAs in the small intestine of pigs shows circadian rhythms and its regulation by clock genes was still unknown. Objectives We examined whether the abundance of glucose transporters and clock genes mRNAs in the small intestine of pigs shows circadian rhythms. Methods Twenty barrows (4 weeks old) were reared under 12 h bright and 12 h dark lighting conditions. During the 3‐week feeding trial, pigs were allowed free access to feed. The abundances of the mRNA of glucose transporters (SGLT1 and GLUT2) and clock genes (Bmal1, Per1, Per2, and Cry2) in the intestine were measured at four time points (ZT2, ZT8, ZT14, and ZT20). Results In the jejunum, the abundance of SGLT1 mRNA was higher at ZT20 and ZT2 and lower at ZT8 and ZT14 (p < 0.05). The abundances of GLUT2 mRNA in the jejunum at ZTs 20 and 2 were tended to be higher than those at ZTs 8 and 14 (p = 0.05). In the jejunum, the abundance of Bmal1 mRNA was higher at ZT8 and ZT14 than at ZT20 and ZT2 (p < 0.05). Further, the abundance of Per1 mRNA at ZT2 was higher than those at the other sampling times (p < 0.05). The abundance of Per1 mRNA at ZT8 was higher than that at ZT14 (p < 0.05), while that of Per2 mRNA was higher at ZT2 than those at ZTs 20 and 14 (p < 0.05). Conclusion We speculate that these circadian rhythms of abundances of glucose transporter mRNAs are regulated by the clock genes expressed in the jejunum.
Collapse
Affiliation(s)
- Yuki Kinoshita
- Department of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Hayata Takahashi
- Department of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Masaya Katsumata
- Department of Veterinary Medicine, Azabu University, Sagamihara, Japan
| |
Collapse
|
10
|
He C, Lei J, Yao Y, Qu X, Chen J, Xie K, Wang X, Yi Q, Xiao B, Guo S, Zou X. Black Soldier Fly ( Hermetia illucens) Larvae Meal Modulates Intestinal Morphology and Microbiota in Xuefeng Black-Bone Chickens. Front Microbiol 2021; 12:706424. [PMID: 34603233 PMCID: PMC8482533 DOI: 10.3389/fmicb.2021.706424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
The addition of Hermetia illucens larvae meal (HILM) to the feed could contribute to particular antimicrobial and intestinal health in animal husbandry. This study was conducted to investigate the effects of HILM on intestinal morphology and microbial diversity in different intestinal segments of Xuefeng black-bone chickens. All of 432 birds (45 weeks old) were randomly assigned to four equal groups with six replicates and 18 hens in each replicate: (A) basal diet, (B) basal diet with 1% HILM, (C) basal diet with 3% HILM, and (D) basal diet with 5% HILM. The results showed that, compared with the basal diet group, the HILM supplement significantly increased the abundance-based coverage estimator (ACE) and Chao index in cecum (p < 0.05). Diet with 1% HILM significantly increased the villus height (VH) of the duodenum (p < 0.05) and cecum microbial diversity as represented by the Simpson index (p < 0.05). In particular, 1% HILM displayed a markedly increase in the genus unclassified Bacteroidales (cecum, p < 0.05). A basal diet with 3% HILM markedly increased the beneficial genus Romboutsia (jejunum, p < 0.05). Also, principal component analysis (PCA) cluster analysis showed that 3% of HILM was more individual than other groups (p < 0.05). However, 5% HILM decreased the VH and the ratio of villus height to crypt depth (VH/CD) of the jejunum and increased beneficial bacteria such as Staphylococcus (p < 0.05), which was regarded as pathogenetic genera. In conclusion, we found that HILM improved intestinal morphology and increased microbiological diversity and species abundance. Together, dietary supplementation of 1 or 3% HILM might benefit the intestinal morphology and intestinal microbiota of Xuefeng black-bone chicken. However, the addition of 5% HILM could decrease VH and the ratio of VH/CD of the jejunum and increased pathogenetic genera. HILM was an excellent protein substitute for Xuefeng black-bone chickens, which could meet the nutritional requirements under the condition of less feed. These results provide information for HILM meal as an alternative source of soybean meal in Xuefeng black-bone chickens’ feed.
Collapse
Affiliation(s)
- Changqing He
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiaxing Lei
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yaling Yao
- Huaihua Animal Husbandry and Fishery Affairs Center, Huaihua, China
| | - Xiangyong Qu
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jifa Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,College of Life Science and Resources and Environment, Yichun University, Yichun, China
| | - Kailai Xie
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Changsha, China
| | - Xingju Wang
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Changsha, China
| | - Qi Yi
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Changsha, China
| | - Bing Xiao
- Hunan Yunfeifeng Agricultural Co., Ltd., Huaihua, China
| | - Songchang Guo
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaoyan Zou
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
11
|
Li Z, Tang W, Gong S, Li Y, Xia S, Zhang B, Ma J. Effects of dietary protein on gut development, microbial compositions and mucin expressions in mice. J Appl Microbiol 2021; 132:2262-2269. [PMID: 34411380 DOI: 10.1111/jam.15260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 11/27/2022]
Abstract
AIMS Dietary protein, as an important macronutrient, widely participates in host growth and metabolism. In this study, effects of different protein levels (14, 20 and 26%) on the gut development, microbial compositions and mucin expressions were studied in C57BL/6 mice. METHODS AND RESULTS The results showed that body weight and the relative weight of stomach and gut were decreased in low-protein diet-fed mice, whereas high-protein diet significantly reduced the villus length and area of jejunum. Goblet cells number in the jejunum was reduced in the low-protein group, which was reversed by dietary a high-protein diet. In addition, high-protein diet notably reduced microbial diversity and changed the microbial compositions at the phylum level, such as Bacteroides, Proteobacteria, Actinomycetes and Deferribacteres. Furthermore, high-protein diet significantly increased mucin2, mucin3 and mucin4 expressions in the jejunum, but downregulated mucin1, mucin2, mucin4 and TFF3 in the ileum, indicating a tissue-dependent manner. CONCLUSIONS Together, high-protein diet may impair gut development, microbial balance and mucin system, and a low-protein diet is suggested to promote a healthy lifestyle. SIGNIFICANCE AND IMPACT OF STUDY Mucin influenced gut development (villus index and goblet cell number) through remodelling gut microbes, as low and high protein levels resulted in contrary expression levels of mucin in jejunum and ileum.
Collapse
Affiliation(s)
- Zuohua Li
- College of Animal Science and Technology, Hunan Agricultural University, Animal Nutrition Genome and Germplasm Innovation Research Center, Changsha, Hunan, China
| | - Wenjie Tang
- College of Animal Science and Technology, Hunan Agricultural University, Animal Nutrition Genome and Germplasm Innovation Research Center, Changsha, Hunan, China.,Sichuan Animal Sciences Academy, Animal Breeding and Genetics key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Saiming Gong
- College of Animal Science and Technology, Hunan Agricultural University, Animal Nutrition Genome and Germplasm Innovation Research Center, Changsha, Hunan, China
| | - Yunxia Li
- College of Animal Science and Technology, Hunan Agricultural University, Animal Nutrition Genome and Germplasm Innovation Research Center, Changsha, Hunan, China
| | - Siting Xia
- College of Animal Science and Technology, Hunan Agricultural University, Animal Nutrition Genome and Germplasm Innovation Research Center, Changsha, Hunan, China
| | - Bin Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Animal Nutrition Genome and Germplasm Innovation Research Center, Changsha, Hunan, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Agricultural University, Animal Nutrition Genome and Germplasm Innovation Research Center, Changsha, Hunan, China
| |
Collapse
|
12
|
Chen Y, Xie Y, Zhong R, Liu L, Lin C, Xiao L, Chen L, Zhang H, Beckers Y, Everaert N. Effects of Xylo-Oligosaccharides on Growth and Gut Microbiota as Potential Replacements for Antibiotic in Weaning Piglets. Front Microbiol 2021; 12:641172. [PMID: 33717037 PMCID: PMC7947891 DOI: 10.3389/fmicb.2021.641172] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
Xylo-oligosaccharides (XOS) is a well-known kind of oligosaccharide and extensively applied as a prebiotic. The objective of this study was to investigate the effect of XOS supplementation substituting chlortetracycline (CTC) on growth, gut morphology, gut microbiota, and hindgut short chain fatty acid (SCFA) contents of weaning piglets. A total of 180 weaned piglets were randomly allocated to three treatments for 28 days, as follows: control group (basal diet, CON), basal diet with 500 mg/kg (XOS500) XOS, and positive control (basal diet with 100 mg/kg CTC). Compared with the CON group, the piglets in the XOS500 group improved body weight (BW) on days 28, average daily gain (ADG) and reduced feed: gain ratio during days 1–28 (P < 0.05). The XOS500 supplementation increased Villus height and Villus height: Crypt depth ratio in the ileum (P < 0.05). Villus Height: Crypt Depth of the ileum was also increased in the CTC treatment group (P < 0.05). Meanwhile, the XOS500 supplementation increased significantly the numbers of goblet cells in the crypt of the cecum. High-throughput 16S rRNA gene sequencing revealed distinct differences in microbial compositions between the ileum and cecum. XOS500 supplementation significantly increased the bacterial diversity. However, CTC treatment markedly reduced the microbial diversity (P < 0.05). Meanwhile, XOS500 supplementation in the diet significantly increased the abundance of Lactobacillus genus compared to the CON and CTC group in the ileum and cecum (P < 0.01), whereas the level of Clostridium_sensu_stricto_1, Escherichia-Shigella, and Terrisporobacter genus in the XOS500 group were markedly lower than the CON and CTC group (P < 0.05). In addition, dietary supplementation with XOS500 significantly increased the total short-chain fatty acids, propionate and butyrate concentrations and decreased the acetate concentration compared to the CON group in the cecum (P < 0.05). In summary, dietary supplemented with XOS500 could enhance specific beneficial microbiota abundance and decrease harmful microbiota abundance to maintain the structure of the intestinal morphology and improve growth performance of weaned piglets. Thus, XOS may potentially function as an alternative to in-feed antibiotics in weaned piglets in modern husbandry.
Collapse
Affiliation(s)
- Yuxia Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| | - Yining Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changguang Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Lin Xiao
- Shandong Longlive Bio-Technology Co., Ltd., Yucheng, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yves Beckers
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| |
Collapse
|