1
|
Gallegos-Rodarte C, Escobar-Chavarría O, Cantera-Bravo MM, Sarmiento-Silva RE, Benitez-Guzman A. NLRP3 Inflammasome Involved with Viral Replication in Cytopathic NADL BVDV Infection and IFI16 Inflammasome Connected with IL-1β Release in Non-Cytopathic NY-1 BVDV Infection in Bovine Macrophages. Viruses 2023; 15:1494. [PMID: 37515181 PMCID: PMC10386432 DOI: 10.3390/v15071494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammasomes are multiprotein complexes that play a role in the processing of proinflammatory cytokines such as interleukin 1 beta (IL-1β). The secretion of IL-1β in bovine macrophages infected with the bovine viral diarrhea virus (BVDV) cytopathic strain NADL (NADLcp-BVDV) is caspase 1-dependent. In the present study, we found that in macrophages infected with NADL, the NLRP3 inflammasome participated in the maturation of IL-1β as the level decreased from 4629.3 pg/mL to 897.0 pg/mL after treatment with cytokine release inhibitory drug 3 (CRID3). Furthermore, NLRP3 activation has implications regarding viral replication, as there was a decrease in the viral titer until 1 log of a supernatant of macrophages that were inhibited with CRID3 remained. In the case of the non-cytopathic BVDV strain NY-1 (NY-1 ncpBVDV), IL-1β secretion is not affected by NLRP3, but could be related to the IFI16 inflammasome; we found a colocalization of IFI16 with ASC using confocal microscopy in infected macrophages with the NY-1 ncp-BVDV biotype. To relate IFI16 activation to IL-1β release, we used ODN TTAGGG (A151), a competitive inhibitor of IFI16; the results show a decrease in its level from 248 pg/mL to 128.3 pg/mL. Additionally, we evaluated the caspase 1 activation downstream of IFI16 and found a decrease in the IL-1β from 252.9 pg/mL to 63.5 pg/mL when caspase 1 was inhibited with Y-VAD. Our results provide an improved understanding of the mechanisms involved in the viral replication, inflammation and pathogenesis of bovine viral diarrhea.
Collapse
Affiliation(s)
| | | | | | | | - Alejandro Benitez-Guzman
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (C.G.-R.); (O.E.-C.); (M.M.C.-B.); (R.E.S.-S.)
| |
Collapse
|
2
|
Jin Z, Zhu Z, Zhang W, Liu L, Tang M, Li D, Yan D, Zhu X. Effects of TRIM59 on RAW264.7 macrophage gene expression and function. Immunobiology 2021; 226:152109. [PMID: 34252840 DOI: 10.1016/j.imbio.2021.152109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 05/12/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Macrophages have a variety of functions, such as secreting cytokines, phagocytosis, et al. Tripartite motif containing 59 (TRIM59) protein is highly expressed in tumor cells. It can regulate proliferation of tumor cells and promote tumor progression. Recent studies shown that the expression of TRIM59 was different in macrophages when stimulated by different stimuli, however, the effects of TRIM59 on macrophage gene expression profiles and functions are still unknown. In our study, we constructed RAW264.7 macrophages with high and low expression of TRIM59, and used next generation sequencing to explore the effects of TRIM59 on macrophage gene expression profiles. Results showed that TRIM59 affected an abundant number of genes, and may affect phagocytosis and cell cycles. We also examined the expression of surface molecules, secretion of cytokines, phagocytosis, proliferation, and apoptosis of macrophages, and confirmed that TRIM59 increased the expression of FcγRs CD16/32, CD64 and the secretion of TNF-α and IL-10, promoted phagocytosis and proliferation of RAW264.7 cells, inhibited the expression of complement receptor CD11b and antigen presentation related receptors (MHCII, CD80), but TRIM59 had no significant effect on apoptosis. Our study explored the effect of TRIM59 on the gene expression and function of macrophages comprehensively.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, West of Zhongshan Avenue 183#, Guangzhou, Guangdong Province, China
| | - Wenxin Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Liping Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Mengyan Tang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China.
| | - Xun Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
3
|
Ye C, Huang Q, Jiang J, Li G, Xu D, Zeng Z, Peng L, Peng Y, Fang R. ATP-dependent activation of NLRP3 inflammasome in primary murine macrophages infected by pseudorabies virus. Vet Microbiol 2021; 259:109130. [PMID: 34052623 DOI: 10.1016/j.vetmic.2021.109130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/23/2021] [Indexed: 12/18/2022]
Abstract
Pseudorabies virus (PRV), an alphaherpesvirus, causes respiratory and reproductive diseases in pigs and severe nervous symptom in other susceptible hosts. Previous studies showed that PRV infection induced a systemic inflammatory response in mice, indicating that pro-inflammatory cytokines participated in viral neuropathy in mice. The pro-inflammatory cytokine IL-1β is a key mediator of the inflammatory response and plays an important role in host-response to pathogens. However, the secretion of IL-1β and its relationship with inflammasome activation during PRV infection remains poorly understood. In this study, we found that PRV infection caused significant secretion of several pro-inflammatory cytokines in macrophages and promoted IL-1β secretion in an ATP-dependent manner. Furthermore, the expression of IL-1β can be induced by only PRV infection and depended on NF-κB pathway activation, while the subsequent secretion of IL-1β was mediated by ATP-induced P2 × 7R activation, loss of intracellular K+, and the subsequent NLRP3 inflammasome activation. By using a mouse infection model, we also found that ATP exacerbated clinical signs and death of mice infected by PRV in a NLRP3-dependent manner. These results indicate that ATP facilitates activation of NLRP3 inflammasome and enhances the pathogenicity of PRV in mice during its acute infection.
Collapse
Affiliation(s)
- Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Qingyuan Huang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Jiali Jiang
- Chongqing Animal Disease Prevention and Control Center, Chongqing, 401120, China
| | - Gang Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Dongyi Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Zheng Zeng
- Chongqing Animal Disease Prevention and Control Center, Chongqing, 401120, China
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yuanyi Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
4
|
Al-Kubati AAG, Hussen J, Kandeel M, Al-Mubarak AIA, Hemida MG. Recent Advances on the Bovine Viral Diarrhea Virus Molecular Pathogenesis, Immune Response, and Vaccines Development. Front Vet Sci 2021; 8:665128. [PMID: 34055953 PMCID: PMC8160231 DOI: 10.3389/fvets.2021.665128] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
The bovine viral diarrhea virus (BVDV) consists of two species and various subspecies of closely related viruses of varying antigenicity, cytopathology, and virulence-induced pathogenesis. Despite the great ongoing efforts to control and prevent BVDV outbreaks and the emergence of new variants, outbreaks still reported throughout the world. In this review, we are focusing on the molecular biology of BVDV, its molecular pathogenesis, and the immune response of the host against the viral infection. Special attention was paid to discuss some immune evasion strategies adopted by the BVDV to hijack the host immune system to ensure the success of virus replication. Vaccination is one of the main strategies for prophylaxis and contributes to the control and eradication of many viral diseases including BVDV. We discussed the recent advances of various types of currently available classical and modern BVDV vaccines. However, with the emergence of new strains and variants of the virus, it is urgent to find some other novel targets for BVDV vaccines that may overcome the drawbacks of some of the currently used vaccines. Effective vaccination strategy mainly based on the preparation of vaccines from the homologous circulating strains. The BVDV-E2 protein plays important role in viral infection and pathogenesis. We mapped some important potential neutralizing epitopes among some BVDV genomes especially the E2 protein. These novel epitopes could be promising targets against the currently circulating strains of BVDV. More research is needed to further explore the actual roles of these epitopes as novel targets for the development of novel vaccines against BVDV. These potential vaccines may contribute to the global eradication campaign of the BVDV.
Collapse
Affiliation(s)
- Anwar A G Al-Kubati
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abdullah I A Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
5
|
Abdelsalam K, Rajput M, Elmowalid G, Sobraske J, Thakur N, Abdallah H, Ali AAH, Chase CCL. The Effect of Bovine Viral Diarrhea Virus (BVDV) Strains and the Corresponding Infected-Macrophages' Supernatant on Macrophage Inflammatory Function and Lymphocyte Apoptosis. Viruses 2020; 12:E701. [PMID: 32610565 PMCID: PMC7412197 DOI: 10.3390/v12070701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/01/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an important viral disease of cattle that causes immune dysfunction. Macrophages are the key cells for the initiation of the innate immunity and play an important role in viral pathogenesis. In this in vitro study, we studied the effect of the supernatant of BVDV-infected macrophage on immune dysfunction. We infected bovine monocyte-derived macrophages (MDM) with high or low virulence strains of BVDV. The supernatant recovered from BVDV-infected MDM was used to examine the functional activity and surface marker expression of normal macrophages as well as lymphocyte apoptosis. Supernatants from the highly virulent 1373-infected MDM reduced phagocytosis, bactericidal activity and downregulated MHC II and CD14 expression of macrophages. Supernatants from 1373-infected MDM induced apoptosis in MDBK cells, lymphocytes or BL-3 cells. By protein electrophoresis, several protein bands were unique for high-virulence, 1373-infected MDM supernatant. There was no significant difference in the apoptosis-related cytokine mRNA (IL-1beta, IL-6 and TNF-a) of infected MDM. These data suggest that BVDV has an indirect negative effect on macrophage functions that is strain-specific. Further studies are required to determine the identity and mechanism of action of these virulence factors present in the supernatant of the infected macrophages.
Collapse
Affiliation(s)
- Karim Abdelsalam
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.R.); (J.S.); (N.T.)
- Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (G.E.); (H.A.); (A.A.H.A.)
| | - Mrigendra Rajput
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.R.); (J.S.); (N.T.)
| | - Gamal Elmowalid
- Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (G.E.); (H.A.); (A.A.H.A.)
| | - Jacob Sobraske
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.R.); (J.S.); (N.T.)
| | - Neelu Thakur
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.R.); (J.S.); (N.T.)
| | - Hossam Abdallah
- Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (G.E.); (H.A.); (A.A.H.A.)
| | - Ahmed A. H. Ali
- Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (G.E.); (H.A.); (A.A.H.A.)
| | - Christopher C. L. Chase
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.R.); (J.S.); (N.T.)
| |
Collapse
|