1
|
Keopaseuth S, Pringproa K, Patchanee P, Setthawongsin C, Techangamsuwan S, Chuammitri P. Divergent DNA methylation patterns and gene expression in MYC and CDKN2B in canine transmissible venereal tumors. Vet World 2024; 17:1581-1590. [PMID: 39185058 PMCID: PMC11344115 DOI: 10.14202/vetworld.2024.1581-1590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/03/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim Canine transmissible venereal tumor (CTVT), a unique transmissible cancer in dogs, affects the external genitalia and potentially spreads to other parts of the body. While somatic mutations in oncogenic and tumor-suppressing genes are linked to CTVT development, the impact of DNA methylation, which affects gene expression, remains unclear. This study explored whether DNA methylation in the promoter regions of the MYC oncogene and CDKN2B tumor suppressor genes in CTVTs is associated with their expression, both at the gene and protein levels. Materials and Methods To investigate promoter DNA methylation of MYC and CDKN2B in CTVTs, we analyzed frozen tissue samples from genital CTVT (GTVTs) and extragenital CTVT (ETVTs). Genomic DNA was extracted, bisulfite-treated, and analyzed using bisulfite polymerase chain reaction (PCR) and sequencing. The messenger RNA and protein of MYC and CDKN2B were also extracted and assessed by real-time PCR and Western blotting. Matching formalin-fixed, paraffin-embedded blocks were used for immunohistochemical staining to visualize protein distribution in GTVT and ETVT tissues. Results Although both GTVT and ETVT samples showed MYC promoter methylation, the extent of methylation differed significantly. GTVTs displayed a much higher degree of methylation, potentially explaining the more pronounced downregulation of MYC gene expression and reduction in c-MYC protein levels observed in GTVTs compared with ETVTs. Our data revealed a prevalent hypermethylation pattern in the CDKN2B promoter across both sample types. However, DNA methylation, which was expected to have a suppressive effect, did not correlate with gene/protein expression. GTVTs displayed high protein levels despite significantly reduced CDKN2B expression. Conversely, ETVTs maintained regular CDKN2B expression but exhibited reduced protein production, suggesting a complex interplay between methylation and expression in these tumors. Conclusion MYC demonstrated a clear association between its promoter methylation status, gene expression, and protein levels; however, CDKN2B lacked this correlation, implying the involvement of methylation-independent regulatory mechanisms and highlighting the need for further investigation.
Collapse
Affiliation(s)
- Soukkangna Keopaseuth
- Graduate Program in Veterinary Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100 Thailand
| | - Kidsadagon Pringproa
- Veterinary Bioscience Unit, Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100 Thailand
| | - Prapas Patchanee
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100 Thailand
| | - Chanokchon Setthawongsin
- Department of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Somporn Techangamsuwan
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Phongsakorn Chuammitri
- Veterinary Bioscience Unit, Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100 Thailand
| |
Collapse
|
2
|
Teoh YB, Ishizaki T, Kagawa Y, Yokoyama S, Jelinek J, Matsumoto Y, Tomiyasu H, Tsujimoto H, Takiguchi M, Yamazaki J. Use of genome-wide DNA methylation analysis to identify prognostic CpG site markers associated with longer survival time in dogs with multicentric high-grade B-cell lymphoma. J Vet Intern Med 2024; 38:316-325. [PMID: 38115210 PMCID: PMC10800228 DOI: 10.1111/jvim.16931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/25/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND DNA methylation analysis might identify prognostic CpG sites in CHOP-treated dogs with multicentric high-grade B-cell lymphoma (MHGL) with heterogenous prognosis. OBJECTIVE To identify prognostic CpG sites of MHGL through genome-wide DNA methylation analysis with pyrosequencing validation. ANIMALS Test group: 24 dogs. Validation group: 100 dogs. All client-owned dogs were diagnosed with MHGL and treated with CHOP chemotherapy. METHODS Cohort study. DNA was extracted from lymph node samples obtained via FNA. Genome-wide DNA methylation analysis using Digital Restriction Enzyme Analysis of Methylation (DREAM) was performed on the test group to identify differentially methylated CpG sites (DMCs). Bisulfite pyrosequencing was used to measure methylation status of candidate DMCs in the validation group. Median survival times (MST) were analyzed using Kaplan-Meier (log-rank) product limit method. RESULTS DREAM analyzed 101 576 CpG sites. Hierarchical clustering of 16 262 CpG sites in test group identified group with better prognosis (MST = 55-477 days vs 10-301 days, P = .007). Volcano plot identified 1371 differentially methylated CpG sites (DMCs). DMC near the genes of FAM213A (DMC-F) and PHLPP1 (DMC-P) were selected as candidates. Bisulfite-pyrosequencing performed on validation group showed group with methylation level of DMC-F < 40% had favorable prognosis (MST = 11-1072 days vs 8-1792 days, P = .01), whereas group with the methylation level combination of DMC-F < 40% plus DMC-P < 10% had excellent prognosis (MST = 18-1072 days vs 8-1792 days, P = .009). CONCLUSION AND CLINICAL IMPORTANCE Methylation status of prognostic CpG sites delineate canine MGHL cases with longer MST, providing owners with information on expectations of potential improved treatment outcomes.
Collapse
Affiliation(s)
- Yong Bin Teoh
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary MedicineHokkaido UniversitySapporoHokkaidoJapan
- One Health Research CenterHokkaido UniversitySapporoHokkaidoJapan
| | | | | | - Shoko Yokoyama
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary MedicineHokkaido UniversitySapporoHokkaidoJapan
- One Health Research CenterHokkaido UniversitySapporoHokkaidoJapan
| | | | | | - Hirotaka Tomiyasu
- Laboratory of Veterinary Internal MedicineUniversity of TokyoTokyoJapan
| | - Hajime Tsujimoto
- Japan Animal Referral Medical Center (JARMeC)KawasakiKanagawaJapan
| | - Mitsuyoshi Takiguchi
- One Health Research CenterHokkaido UniversitySapporoHokkaidoJapan
- Laboratory of Veterinary Internal MedicineHokkaido UniversitySapporoHokkaidoJapan
| | - Jumpei Yamazaki
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary MedicineHokkaido UniversitySapporoHokkaidoJapan
- One Health Research CenterHokkaido UniversitySapporoHokkaidoJapan
| |
Collapse
|
3
|
Chen B, Ding X, Wan A, Qi X, Lin X, Wang H, Mu W, Wang G, Zheng J. Comprehensive analysis of TLX2 in pan cancer as a prognostic and immunologic biomarker and validation in ovarian cancer. Sci Rep 2023; 13:16244. [PMID: 37758722 PMCID: PMC10533500 DOI: 10.1038/s41598-023-42171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
T cell leukemia homeobox 2 (TLX2) plays an important role in some tumors. Bioinformatics and experimental validation represent a useful way to explore the mechanisms and functions of TLX2 gene in the cancer disease process from a pan cancer perspective. TLX2 was aberrantly expressed in pan cancer and cell lines and correlated with clinical stage. High TLX2 expression was significantly associated with poor overall survival in COAD, KIRC, OC, and UCS. The greatest frequency of TLX2 alterations in pan cancer was amplification. Alterations of NXF2B, MSLNL, PCGF1, INO80B-WBP1, LBX2-AS1, MRPL53, LBX2, TTC31, WDR54, and WBP1 co-occurred in the TLX2 alteration group. PFS was significantly shorter in the TLX2-altered group (n = 6) compared to the TLX2-unaltered group (n = 400). Methylation levels of TLX2 were high in 17 tumors. TLX2 expression was associated with MSI in seven tumors and TMB in five tumors. TLX2 expression was associated with immune infiltration and immune checkpoint genes. TLX2 may be associated with some pathways and chemoresistance. We constructed a possible competing endogenous RNA (ceRNA) network of LINC01010/miR-146a-5p/TLX2 in OC. TLX2 expression was significantly upregulated in ovarian cancer cell lines compared to ovarian epithelial cell lines. Aberrant expression of TLX2 in pan cancer may promote tumorigenesis and progression through different mechanisms. TLX2 may represent an important therapeutic target for human cancers.
Collapse
Affiliation(s)
- Buze Chen
- Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Cancer Institute, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong District, Xuzhou, 221004, Jiangsu, China.
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.
| | - Xiaojuan Ding
- Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ailing Wan
- Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xin Qi
- Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xiaoman Lin
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China
| | - Haihong Wang
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China
| | - Wenyu Mu
- Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong District, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
4
|
Asari Y, Yamazaki J, Thandar O, Suzuki T, Aoshima K, Takeuchi K, Kinoshita R, Kim S, Hosoya K, Ishizaki T, Kagawa Y, Jelinek J, Yokoyama S, Sasaki N, Ohta H, Nakamura K, Takiguchi M. Diverse genome-wide DNA methylation alterations in canine hepatocellular tumours. Vet Med Sci 2023; 9:2006-2014. [PMID: 37483163 PMCID: PMC10508506 DOI: 10.1002/vms3.1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Canine hepatocellular tumours (HCTs) are common primary liver tumours. However, the exact mechanisms of tumourigenesis remain unclear. Although some genetic mutations have been reported, DNA methylation alterations in canine HCT have not been well studied. OBJECTIVES In this study, we aimed to analyse the DNA methylation status of canine HCT. METHODS Tissues from 33 hepatocellular carcinomas, 3 hepatocellular adenomas, 1 nodular hyperplasia, 21 non-tumour livers from the patients and normal livers from 5 healthy dogs were used. We analysed the DNA methylation levels of 72,367 cytosine-guanine dinucleotides (CpG sites) in all 63 samples. RESULTS AND CONCLUSIONS Although a large fraction of CpG sites that were highly methylated in the normal liver became hypomethylated in tumours from most patients, we also found some patients with less remarkable change or no change in DNA methylation. Hierarchical clustering analysis revealed that 32 of 37 tumour samples differed from normal livers, although the remaining 5 tumour livers fell into the same cluster as normal livers. In addition, the number of hypermethylated genes in tumour livers varied among tumour cases, suggesting various DNA methylation patterns in different tumour groups. However, patient and clinical parameters, such as age, were not associated with DNA methylation status. In conclusion, we found that HCTs undergo aberrant and diverse patterns of genome-wide DNA methylation compared with normal liver tissue, suggesting a complex epigenetic mechanism in canine HCT.
Collapse
Affiliation(s)
- Yu Asari
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Jumpei Yamazaki
- Veterinary Teaching HospitalGraduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
| | - Oo Thandar
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Tamami Suzuki
- Laboratory of Comparative Pathology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Keisuke Aoshima
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
- Laboratory of Comparative Pathology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Kyosuke Takeuchi
- Veterinary Teaching HospitalGraduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Ryohei Kinoshita
- Veterinary Teaching HospitalGraduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
| | - Sangho Kim
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
- Laboratory of Veterinary Surgery, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Kenji Hosoya
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
- Laboratory of Veterinary Surgery, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Teita Ishizaki
- Veterinary Teaching HospitalGraduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- Laboratory of Comparative Pathology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- North LabSapporoJapan
| | | | | | - Shoko Yokoyama
- Veterinary Teaching HospitalGraduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
- One Health Research Center, Cancer Research UnitHokkaido UniversitySapporoJapan
| | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Kensuke Nakamura
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
5
|
Chu S, Avery A, Yoshimoto J, Bryan JN. Genome wide exploration of the methylome in aggressive B-cell lymphoma in Golden Retrievers reveals a conserved hypermethylome. Epigenetics 2022; 17:2022-2038. [PMID: 35912844 PMCID: PMC9665123 DOI: 10.1080/15592294.2022.2105033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Few recurrent DNA mutations are seen in aggressive canine B cell lymphomas (cBCL), suggesting other frequent drivers. The methylated island recovery assay (MIRA-seq) or methylated CpG-binding domain sequencing (MBD-seq) was used to define the genome-wide methylation profiles in aggressive cBCL in Golden Retrievers to determine if cBCL can be better defined by epigenetic changes than by DNA mutations. DNA hypermethylation patterns were relatively homogenous within cBCL samples in Golden Retrievers, in different breeds and in geographical regions. Aberrant hypermethylation is thus suspected to be a central and early event in cBCL lymphomagenesis. Distinct subgroups within cBCL in Golden Retrievers were not identified with DNA methylation profiles. In comparison, the methylome profile of human DLBCL (hDLBCL) is relatively heterogeneous. Only moderate similarity between hDLBCL and cBCL was seen and cBCL likely cannot be accurately classified into the subtypes seen in hDLBCL. Genes with hypermethylated regions in the promoter-TSS-first exon of cBCL compared to normal B cells often also had additional hyper- and hypomethylated regions distributed throughout the gene suggesting non-randomized repeat targeting of key genes by epigenetic mechanisms. The prevalence of hypermethylation in transcription factor families in aggressive cBCL may represent a fundamental step in lymphomagenesis.
Collapse
Affiliation(s)
- Shirley Chu
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E. Campus Drive, Columbia, MO, USA
| | - Anne Avery
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Janna Yoshimoto
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E. Campus Drive, Columbia, MO, USA
| |
Collapse
|
6
|
A Comparative View on Molecular Alterations and Potential Therapeutic Strategies for Canine Oral Melanoma. Vet Sci 2021; 8:vetsci8110286. [PMID: 34822659 PMCID: PMC8619620 DOI: 10.3390/vetsci8110286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Canine oral melanoma (COM) is a highly aggressive tumour associated with poor prognosis due to metastasis and resistance to conventional anti-cancer therapies. As with human mucosal melanoma, the mutational landscape is predominated by copy number aberrations and chromosomal structural variants, but differences in study cohorts and/or tumour heterogeneity can lead to discordant results regarding the nature of specific genes affected. This review discusses somatic molecular alterations in COM that result from single nucleotide variations, copy number changes, chromosomal rearrangements, and/or dysregulation of small non-coding RNAs. A cross-species comparison highlights notable recurrent aberrations, and functionally grouping dysregulated proteins reveals unifying biological pathways that may be critical for oncogenesis and metastasis. Finally, potential therapeutic strategies are considered to target these pathways in canine patients, and the benefits of collaboration between science, medical, and veterinary communities are emphasised.
Collapse
|
7
|
Yamazaki J, Jelinek J, Yokoyama S, Takiguchi M. Genome-wide DNA methylation profile in feline haematological tumours: A preliminary study. Res Vet Sci 2021; 140:221-228. [PMID: 34534903 DOI: 10.1016/j.rvsc.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 01/17/2023]
Abstract
Although DNA methylation has been analysed in few studies for a limited number of loci in cats with diseases, genome-wide profile of DNA methylation has never been addressed. The hypothesis for this study is that next-generation sequencing with sequential digestion of genomic DNA with SmaI and XmaI enzymes could provide highly quantitative information on methylation levels in cats. Using blood from four healthy control cats and two disease cats as well as three feline lymphoma/leukemia cell lines, approximately 74-94 thousand CpG sites across the cat genome could be analysed. CpG sites in CpG island (CGI) were broadly either methylated or unmethylated in normal blood, while CpG sites in non-CpG islands (NCGI) are largely methylated. Lymphoma cell lines showed thousands of CpG sites with gain of methylation at normally unmethylated CGI sites and loss of methylation at normally methylated NCGI sites. Hypermethylated CpG sites located at promoter regions included genes annotated with 'developmental process' and 'anatomical structure morphogenesis' such as HOXD10. This highly quantitative method would be suitable for studies of DNA methylation changes not only in cancer but also in other common diseases in cats.
Collapse
Affiliation(s)
- Jumpei Yamazaki
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan; One Health Research Center, Hokkaido University, Japan; Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan.
| | | | - Shoko Yokoyama
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan; One Health Research Center, Hokkaido University, Japan; Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Mitsuyoshi Takiguchi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| |
Collapse
|
8
|
Scattone NV, Epiphanio TMF, Caddrobi KG, Ferrão JSP, Hernandez-Blazquez FJ, Loureiro APDM, Massoco CDO, Dagli MLZ. Quantification of Global DNA Methylation in Canine Melanotic and Amelanotic Oral Mucosal Melanomas and Peripheral Blood Leukocytes From the Same Patients With OMM: First Study. Front Vet Sci 2021; 8:680181. [PMID: 34504885 PMCID: PMC8421724 DOI: 10.3389/fvets.2021.680181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/02/2021] [Indexed: 02/03/2023] Open
Abstract
Oral mucosal melanomas (OMMs) are aggressive and resistant cancers of high importance in veterinary oncology. Amelanotic OMM produces comparatively less melanin and is considered to be more aggressive than melanotic OMM. Global DNA methylation profiles with hypomethylated or hypermethylated patterns have both been associated with aggressive neoplasms; however, global DNA hypomethylation seems to correlate to higher aggressiveness. Accordingly, global DNA methylation in peripheral blood leukocytes has been investigated to understand the role of systemic or environmental factors in cancer development. This study aimed to quantify global DNA methylation in canine melanotic and amelanotic OMM samples and in the peripheral blood leukocytes of the same dogs. Tumor tissue samples were collected from 38 dogs, of which 19 were melanotic and 19 were amelanotic OMM. These were submitted to immunohistochemistry (IHC) with anti-5-methylcytosine (5mC) and anti-Ki67 primary antibodies. Ki67- and 5mC-positive nuclei were manually scored with the help of an image analysis system. Peripheral blood samples were collected from 18 among the 38 OMM-bearing dogs and from 7 additional healthy control dogs. Peripheral blood leukocytes were isolated from the 25 dogs, and DNA was extracted and analyzed by high-performance liquid chromatography (HPLC) for global DNA methylation. The pattern of global DNA methylation in both canine melanotic and amelanotic OMM indicated higher percentages of weakly or negatively stained nuclei in most of the OMM cells, presuming predominant global DNA hypomethylation. In addition, Ki67 counts in amelanotic OMM were significantly higher than those in melanotic OMM (p < 0.001). Global DNA methylation different immunostaining patterns (strong, weak or negative) correlated with Ki67 scores. Global DNA methylation in circulating leukocytes did not differ between the 9 melanotic and 9 amelanotic OMM or between the 18 OMM-bearing dogs and the 7 healthy dogs. This study provides new information on canine melanotic and amelanotic OMM based on global DNA methylation and cell proliferation.
Collapse
Affiliation(s)
- Nayra Villar Scattone
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Tatiane Moreno Ferrarias Epiphanio
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ana Paula de Melo Loureiro
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristina de Oliveira Massoco
- Laboratory of Pharmacology and Toxicology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Lucia Zaidan Dagli
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|