1
|
Ren J, Liu G, Cui H, Dong X, Mao S, Liu Y, Dai Y. Effect of glutathione addition on vitrification of ovine oocytes. Theriogenology 2025; 240:117412. [PMID: 40179567 DOI: 10.1016/j.theriogenology.2025.117412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
The exogenous antioxidants are commonly employed to mitigate vitrification-induced oxidative damage. Glutathione (GSH), a vital antioxidant, plays a significant role in scavenging free radicals, providing antioxidant protection, and maintaining cellular integrity. This study aimed to investigate the effects of GSH supplementation on the vitrification of ovine oocytes. To identify the optimal concentration of exogenous GSH supplementation, the impacts of 2 mM, 4 mM, and 8 mM GSH on the survival and fragmentation of oocytes were evaluated after vitrification. In addition, immunofluorescence (IF) staining was employed to evaluate spindle morphology, chromosome distribution, cortical granule distribution, mitochondrial function, and reactive oxygen species (ROS) levels. The levels of ATP and NADPH, along with the ratio of GSH/GSSH, were also examined. Additionally, evaluations of in vitro fertilization were carried out. The results of oocyte survival rates and fragmentation rates identified that the addition of 4 mM GSH to the vitrification solution was the optimal concentration. The assessment of spindle morphology, chromosome distribution, cortical granule distribution, mitochondrial function, ROS production, ATP activity, and NADPH levels, as well as the GSH/GSSH ratio, confirm the beneficial effect of GSH supplementation against the vitrification-induced oxidative damage. Lastly, incorporating GSH into the vitrification process enhanced the developmental potential of oocytes, resulting in higher cleavage rates, increased blastocyst rates, and improved quality of blastocysts. Overall, this research uncovered the mechanisms through which GSH mitigates the oxidative damage induced by vitrification, thereby leading to the optimization of the vitrification technique for ovine oocytes.
Collapse
Affiliation(s)
- Jingyu Ren
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Gang Liu
- Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Huan Cui
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Xubin Dong
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Shuangyu Mao
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Yongbin Liu
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China.
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China.
| |
Collapse
|
2
|
Mo X, Liang R, Guo C, Zhao Z, Zhao J, Fang Y, Xu Z. 2-Aminoethyl diphenylborinate mitigates damage from the endoplasmic reticulum of vitrified bovine oocyte. Theriogenology 2025; 237:93-98. [PMID: 39986218 DOI: 10.1016/j.theriogenology.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/15/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Intracellular calcium (Ca2+) homeostasis is primarily maintained by the endoplasmic reticulum (ER). Fluctuations in intracellular Ca2+ concentrations can induce ER stress, ultimately causing cellular apoptosis. Vitrification can increase Ca2+ concentrations and reduce oocyte vitality. However, 2-Aminoethyl Diphenylborinate (2-APB), a Ca2+ release regulator, can maintain ER calcium homeostasis. In this study, after in vitro maturation, MII oocytes were randomly allocated into 4 group in a 4 groups in a 2 x 2 factorial study (fresh or vitrified and with or without exposure to 2-APB before vitrification). There were fewer ER clusters in the cortical region of oocytes after vitrification in the Control group, but they were protected by pre-treated with 2-APB. In addition, 2-APB significantly increased survival and cleavage of vitrified-warmed parthenogenetically activated blastocysts. Expression of the ER stress proteins GRP78 and CHOP, and the apoptotic proteins caspase-9, caspase-3, and cytochrome c (cytC) were all significantly increased in vitrified oocytes. However, with 2-APB pretreatment, expression of those proteins were not significant different from the Control group. In conclusion, 2-APB effectively alleviated ER stress by maintaining Ca2+ homeostasis to mitigate damage in vitrified-warmed bovine oocytes.
Collapse
Affiliation(s)
- Xianhong Mo
- College of Chemistry and Life Sciences, Chifeng University, 024000, Chifeng, China
| | - Rong Liang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, China
| | - Cheng Guo
- College of Chemistry and Life Sciences, Chifeng University, 024000, Chifeng, China
| | - Zengyuan Zhao
- Shijiazhuang Tianquan Elite Dairy Co Ltd, 050200, Shijiazhuang, China
| | - Jing Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, China
| | - Yi Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, China.
| | - Zhenjun Xu
- College of Chemistry and Life Sciences, Chifeng University, 024000, Chifeng, China.
| |
Collapse
|
3
|
Ota F, Minowa H, Miura R, Murase T, Yamamoto T, Himaki T. Effect of bovine oviductal epithelial cell lysate on the developmental competence and quality of bovine in vitro fertilized embryos. Theriogenology 2025; 236:96-104. [PMID: 39922122 DOI: 10.1016/j.theriogenology.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
In vitro fertilization (IVF) technology for embryo production has been applied in basic research, animal husbandry and medicine. However, the developmental efficiency and quality of embryos produced by IVF are inferior to those produced in vivo. In this study, we investigated the effects of supplementing bovine oviductal epithelial cells (BOEC) lysate during the in vitro culture period on the developmental competence and quality of bovine embryos. IVF embryos were cultured for 4 days post-IVF in medium supplemented with 10 % BOEC lysate at various concentrations (1.0 × 105, 2.0 × 105, and 4.0 × 105 cells/mL) or 10 % PBS (-), which was used to adjust the lysate concentration (control). BOEC lysate at 2.0 × 105 cells/mL significantly increased the blastocyst formation rate compared to that in the control group. Blastocysts from BOEC lysate supplemented groups showed significantly lower apoptosis rate than that in the control group. The ratio of inner cell mass cell number in blastocysts was significantly higher in all BOEC lysate supplemented groups than in the control group. The survival rate after vitrification/thawing was improved in the 1.0 × 105 and 2.0 × 105 cells/mL BOEC lysate supplemented groups. In addition, gene expression analysis of blastocysts showed that 2.0 × 105 cells/mL of BOEC lysate supplementation significantly enhanced the expression of anti-apoptotic genes (BCL2 and BIRC5), antioxidant-related genes (GPX1 and SOD2), and cell differentiation-related genes (SOX2 and OCT4). In conclusion, supplementation with 2.0 × 105 cells/mL BOEC lysate during early in vitro culture improved the developmental competence and quality of bovine IVF embryos.
Collapse
Affiliation(s)
- Funa Ota
- Graduate School of Natural Sciences and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hayato Minowa
- Graduate School of Natural Sciences and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Rina Miura
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Tetsuma Murase
- Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Tokunori Yamamoto
- Clinical Research Support Center, Asahikawa Medical University Hospital, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan; Department of Urology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Takehiro Himaki
- Graduate School of Natural Sciences and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Department of Agricultural and Environmental Science, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
4
|
Huang H, Huang C, Li Y, Liang X, Kim N, Xu Y. Methyl Paraben Affects Porcine Oocyte Maturation Through Mitochondrial Dysfunction. Biomolecules 2024; 14:1466. [PMID: 39595642 PMCID: PMC11591637 DOI: 10.3390/biom14111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Parabens are widely used in various industries, which are including chemical, pharmaceutical, food, cosmetic, and plastic processing industries. Among these, methyl paraben (MP) serves as an antimicrobial preservative in processed foods, pharmaceuticals, and cosmetics, and it is particularly detected in baby care products. Studies indicate that MP functions as an endocrine-disrupting compound with estrogenic properties, negatively affecting mitochondrial bioenergetics and antioxidant activity in testicular germ cells. However, limited information exists regarding studies on the effects of MP in oocytes. The aim of this study was to investigate the specific mechanism and the toxic effects of MP during oocyte maturation cultured in vitro using a porcine oocyte model. The results indicated that MP (50 μM) inhibited oocyte expansion, significantly reducing the expression of expansion-related genes MAPK1 and ERK1, and decreased the first polar body extrusion significantly as well. ATP levels decreased, reactive oxygen species (ROS) levels remained unchanged, and glutathione (GSH) levels decreased significantly, resulting in an elevated ROS/GSH ratio. The expression of antioxidant genes SOD1 and GPX was significantly decreased. Additionally, a significant decrease in levels of mitochondrial production and biosynthesis protein PGC1α+β, whereas levels of antioxidant-related protein Nrf2 and related gene expression were significantly increased. Autophagy protein LC3B and gene expression significantly decreased, and apoptosis assay indicated a significant increase in levels of caspase3 protein and apoptosis-related genes. These results demonstrated the negative effect of MP on oocyte maturation. In conclusion, our findings indicate that MP disrupts redox balance and induces mitochondrial dysfunction during meiosis in porcine oocytes, resulting in the inhibition of meiotic progression. The present study reveals the mechanism underlying the effects of methyl para-hydroxybenzoate on oocyte maturation.
Collapse
Affiliation(s)
- Huimei Huang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China; (H.H.); (C.H.); (Y.L.)
| | - Chuman Huang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China; (H.H.); (C.H.); (Y.L.)
| | - Yinghua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China; (H.H.); (C.H.); (Y.L.)
| | - Xingwei Liang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China;
| | - Namhyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China; (H.H.); (C.H.); (Y.L.)
| | - Yongnan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China; (H.H.); (C.H.); (Y.L.)
| |
Collapse
|
5
|
Temerario L, Martino NA, Bennink M, de Wit A, Hiemstra SJ, Dell’Aquila ME, Lamy J. Effects of Cryoprotectant Concentration and Exposure Time during Vitrification of Immature Pre-Pubertal Lamb Cumulus-Oocyte Complexes on Nuclear and Cytoplasmic Maturation. Animals (Basel) 2024; 14:2351. [PMID: 39199884 PMCID: PMC11350855 DOI: 10.3390/ani14162351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Oocyte vitrification allows for the storing of endangered breed female gametes. Cryoprotectant (CPA) concentration and exposure time should ensure cell protection with minimal toxicity. In the present study, a high concentration-rapid exposure (HC-RE) and a low concentration-slow exposure (LC-SE) vitrification protocol, using dimethyl sulfoxide (DMSO) and ethylene glycol (EG) as permeating CPAs, were evaluated on meiotic competence and bioenergetic-oxidative status of pre-pubertal lamb immature COCs after in vitro maturation (IVM). For each protocol, COCs vitrified through a traditional protocol and fresh ones were used as controls. Both protocols allowed COC morphology preservation after vitrification-warming (V-W) and cumulus expansion after IVM. The maturation rate (7% and 14%) was comparable to the vitrified control (13% and 21%) but not satisfactory compared to fresh ones (58% and 64%; p < 0.001). The rate of mature oocytes displaying a perinuclear/subcortical (P/S) mitochondrial distribution pattern, an index of cytoplasmic maturity, was comparable between vitrified and fresh oocytes. The LC-SE vitrification protocol did not affect quantitative bioenergetic-oxidative parameters compared to both controls whereas HC-RE protocol significantly reduced intracellular reactive oxygen species (ROS) levels, indicating cell viability loss. In conclusion, to improve pre-pubertal lamb immature COC vitrification, the combination of low CPA concentrations with prolonged exposure time could be more promising to investigate further.
Collapse
Affiliation(s)
- Letizia Temerario
- Department of Biosciences, Biotechnology & Environment, University of Bari Aldo Moro, Strada per Casamassima km 3, 70010 Valenzano, Italy; (N.A.M.); (M.E.D.)
| | - Nicola Antonio Martino
- Department of Biosciences, Biotechnology & Environment, University of Bari Aldo Moro, Strada per Casamassima km 3, 70010 Valenzano, Italy; (N.A.M.); (M.E.D.)
| | - Monika Bennink
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (M.B.); (A.d.W.); (S.J.H.); (J.L.)
| | - Agnes de Wit
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (M.B.); (A.d.W.); (S.J.H.); (J.L.)
| | - Sipke Joost Hiemstra
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (M.B.); (A.d.W.); (S.J.H.); (J.L.)
| | - Maria Elena Dell’Aquila
- Department of Biosciences, Biotechnology & Environment, University of Bari Aldo Moro, Strada per Casamassima km 3, 70010 Valenzano, Italy; (N.A.M.); (M.E.D.)
| | - Julie Lamy
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (M.B.); (A.d.W.); (S.J.H.); (J.L.)
| |
Collapse
|
6
|
Zhou D, Liu H, Zheng L, Liu A, Zhuan Q, Luo Y, Zhou G, Meng L, Hou Y, Wu G, Li J, Fu X. Metformin alleviates cryoinjuries in porcine oocytes by reducing membrane fluidity through the suppression of mitochondrial activity. Commun Biol 2024; 7:925. [PMID: 39090373 PMCID: PMC11294456 DOI: 10.1038/s42003-024-06631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Plasma membrane damage in vitrified oocytes is closely linked to mitochondrial dysfunction. However, the mechanism underlying mitochondria-regulated membrane stability is not elucidated. A growing body of evidence indicates that mitochondrial activity plays a pivotal role in cell adaptation. Since mitochondria work at a higher temperature than the constant external temperature of the cell, we hypothesize that suppressing mitochondrial activity would protect oocytes from extreme stimuli during vitrification. Here we show that metformin suppresses mitochondrial activity by reducing mitochondrial temperature. In addition, metformin affects the developmental potential of oocytes and improves the survival rate after vitrification. Transmission electron microscopy results show that mitochondrial abnormalities are markedly reduced in vitrified oocytes pretreated with metformin. Moreover, we find that metformin transiently inhibits mitochondrial activity. Interestingly, metformin pretreatment decreases cell membrane fluidity after vitrification. Furthermore, transcriptome results demonstrate that metformin pretreatment modulates the expression levels of genes involved in fatty acid elongation process, which is further verified by the increased long-chain saturated fatty acid contents in metformin-pretreated vitrified oocytes by lipidomic profile analysis. In summary, our study indicates that metformin alleviates cryoinjuries by reducing membrane fluidity via mitochondrial activity regulation.
Collapse
Affiliation(s)
- Dan Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongyu Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lv Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingrui Zhuan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuwen Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guizhen Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Meng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoquan Wu
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China.
| |
Collapse
|
7
|
Wei Y, Pan B, Qin J, Cao B, Lv T, Ye J, Ning A, Du K, Chen X, Zou S, Zang S, Yu G, Song T, Liang Q, Zhou G. The walnut-derived peptide TW-7 improves mouse parthenogenetic embryo development of vitrified MII oocytes potentially by promoting histone lactylation. J Anim Sci Biotechnol 2024; 15:86. [PMID: 38858724 PMCID: PMC11165821 DOI: 10.1186/s40104-024-01045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/05/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Previous studies have shown that the vitrification of metaphase II (MII) oocytes significantly represses their developmental potential. Abnormally increased oxidative stress is the probable factor; however, the underlying mechanism remains unclear. The walnut-derived peptide TW-7 was initially isolated and purified from walnut protein hydrolysate. Accumulating evidences implied that TW-7 was a powerful antioxidant, while its prospective application in oocyte cryopreservation has not been reported. RESULT Here, we found that parthenogenetic activation (PA) zygotes derived from vitrified MII oocytes showed elevated ROS level and delayed progression of pronucleus formation. Addition of 25 μmol/L TW-7 in warming, recovery, PA, and embryo culture medium could alleviate oxidative stress in PA zygotes from vitrified mouse MII oocytes, furtherly increase proteins related to histone lactylation such as LDHA, LDHB, and EP300 and finally improve histone lactylation in PA zygotes. The elevated histone lactylation facilitated the expression of minor zygotic genome activation (ZGA) genes and preimplantation embryo development. CONCLUSIONS Our findings revealed the mechanism of oxidative stress inducing repressed development of PA embryos from vitrified mouse MII oocytes and found a potent and easy-obtained short peptide that could significantly rescue the decreased developmental potential of vitrified oocytes, which would potentially contribute to reproductive medicine, animal protection, and breeding.
Collapse
Affiliation(s)
- Yaozong Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Pan
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianpeng Qin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Beijia Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tianyi Lv
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiangfeng Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ao Ning
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kunlin Du
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangyi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuqi Zou
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shengqin Zang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guozhi Yu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Tianzeng Song
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, 850009, Xizang, China
| | - Qiuxia Liang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.
| | - Guangbin Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
8
|
Temerario L, Monaco D, Mastrorocco A, Martino NA, Cseh S, Lacalandra GM, Ciani E, Dell'Aquila ME. New Strategies for Conservation of Gentile di Puglia Sheep Breed, an Autochthonous Capital of Millennial Tradition in Southern Italy. Animals (Basel) 2023; 13:2371. [PMID: 37508148 PMCID: PMC10376504 DOI: 10.3390/ani13142371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Gentile di Puglia (GdP) is an autochthonous sheep breed of Southern Italy included among ovine breeds threatened by genetic erosion and extinction risk, which have been given attention by local and international institutions, thus emphasizing the need for germplasm conservation actions. In the present study, two assisted reproduction approaches, finalized for GdP conservation, were performed: (1) on-farm reproductive efficiency evaluation, expressed as pregnancy rate (PR), twin pregnancy rate (tPR), and body condition score (BCS), for three consecutive breeding cycles and (2) pre-pubertal lambs' immature cumulus-oocyte complex (COC) retrieval, vitrification, in vitro maturation (IVM), and assessment of meiotic stage and bioenergetic-oxidative status compared with those of other Italian and European commercial breeds. PR and tPR were progressively reduced over time. In all clinical examination times, BCS was significantly lower in nonpregnant ewes compared with pregnant ones. Fresh GdP pre-pubertal lamb COCs achieved meiotic maturation and showed healthy bioenergetic-oxidative status after IVM. Vitrification reduced the oocyte maturation rate in all groups. However, mature oocytes retained their cytoplasmic maturity, expressed as a mitochondria distribution pattern and activity, indicating promising developmental competence. In conclusion, clinical- and biotechnological-assisted reproduction approaches can support conservation strategies of GdP and other local sheep breeds in Southern Italy.
Collapse
Affiliation(s)
- Letizia Temerario
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Strada per Casamassima km 3, Valenzano, 70010 Bari, Italy
| | - Davide Monaco
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada per Casamassima km 3, Valenzano, 70010 Bari, Italy
| | - Antonella Mastrorocco
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Strada per Casamassima km 3, Valenzano, 70010 Bari, Italy
| | - Nicola Antonio Martino
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Strada per Casamassima km 3, Valenzano, 70010 Bari, Italy
| | - Sándor Cseh
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, István St. 2, 1078 Budapest, Hungary
| | - Giovanni Michele Lacalandra
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada per Casamassima km 3, Valenzano, 70010 Bari, Italy
| | - Elena Ciani
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Strada per Casamassima km 3, Valenzano, 70010 Bari, Italy
| | - Maria Elena Dell'Aquila
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Strada per Casamassima km 3, Valenzano, 70010 Bari, Italy
| |
Collapse
|
9
|
Bai J, Li J, Wang L, Hao S, Guo Y, Liu Y, Zhang Z, Li H, Sun WQ, Shi G, Wan P, Fu X. Effect of Antioxidant Procyanidin B2 (PCB2) on Ovine Oocyte Developmental Potential in Response to in Vitro Maturation (IVM) and Vitrification Stress. CRYOLETTERS 2023. [DOI: 10.54680/fr23210110412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND: It was demonstrated that external stress, such as in vitro maturation (IVM) and vitrification process can induce significantly reduced development capacity in oocytes. Previous studies indicated that antioxidants play a pivotal part in the acquisition of adaptation
in changed conditions. At present, the role of the natural potent antioxidant PCB2 in response to IVM and vitrification during ovine oocyte manipulation has not been explored. OBJECTIVE: To investigate whether PCB2 treatment could improve the developmental potential of ovine oocytes
under IVM and vitrification stimuli. MATERIALS AND METHODS: The experiment was divided into two parts. Firstly, the effect of PCB2 on the development of oocytes during IVM was evaluated. Unsupplem ented and 5 μg/mL PCB2 -supplemented in the IVM solution were considered as control
and experimental groups (C + 5 μg/mL PCB2). The polar body extrusion (PBE) rate, mitochondrial membrane potential (MMP), ATP, reactive oxygen species (ROS) levels and early apoptosis of oocytes were measured after IVM. Secondly, we further determine whether PCB2 could improve oocyte quality
under vitrification stress. The survival rate, PBE rate and early apoptosis of oocytes were compared between fresh group, vitrified group and 5 μg/mL PCB2 -supplemented in the IVM solution after vitrification (V + 5μg/mL PCB2). RESULTS: Compared to the control group, adding PCB2
significantly increased PBE rate (79.4% vs. 62.8%, P < 0.01) and MMP level (1.9 ± 0.08 vs. 1.3 ± 0.04, P < 0.01), and decreased ROS level (47.1 ± 6.3 vs. 145.3 ± 8.9, P < 0.01). However, there was no significant difference
in ATP content and early apoptosis. Compared to the fresh group, vitrification significantly reduced oocytes viability (43.0% vs. 90.8%, P < 0.01) as well as PBE rate (24.2% vs. 60.6%, P < 0.05). However, 5 μg/mL PCB2-supplemention during maturation had
no effect on survival, PBE or early apoptosis in vitrified oocytes. CONCLUSION: PCB2 could effectively antagonise the oxidative stress during IVM and promote oocyte development.
Collapse
Affiliation(s)
- Jiachen Bai
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang 050031, China
| | - Longfei Wang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shaopeng Hao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Yanhua Guo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Yucheng Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Zhenliang Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Houru Li
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Wendell Q. Sun
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guoqing Shi
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Olexiková L, Dujíčková L, Makarevich AV, Bezdíček J, Sekaninová J, Nesvadbová A, Chrenek P. Glutathione during Post-Thaw Recovery Culture Can Mitigate Deleterious Impact of Vitrification on Bovine Oocytes. Antioxidants (Basel) 2022; 12:antiox12010035. [PMID: 36670897 PMCID: PMC9854658 DOI: 10.3390/antiox12010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Vitrification of bovine oocytes can impair subsequent embryo development mostly due to elevated oxidative stress. This study was aimed at examining whether glutathione, a known antioxidant, can improve further embryo development when added to devitrified oocytes for a short recovery period. Bovine in vitro matured oocytes were vitrified using an ultra-rapid cooling technique on electron microscopy grids. Following warming, the oocytes were incubated in the recovery medium containing glutathione (0, 1.5, or 5 mmol L-1) for 3 h (post-warm recovery). Afterwards, the oocytes were lysed for measuring the total antioxidant capacity (TAC), activity of peroxidase, catalase and glutathione reductase, and ROS formation. The impact of vitrification on mitochondrial and lysosomal activities was also examined. Since glutathione, added at 5 mmol L-1, significantly increased the TAC of warmed oocytes, in the next set of experiments this dose was applied for post-warm recovery of oocytes used for IVF. Glutathione in the recovery culture did not change the total blastocyst rate, while increased the proportion of faster developing blastocysts (Day 6-7), reduced the apoptotic cell ratio and reversed the harmful impact of vitrification on the actin cytoskeleton. These results suggest that even a short recovery culture with antioxidant(s) can improve the development of bovine devitrified oocytes.
Collapse
Affiliation(s)
- Lucia Olexiková
- Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecká 2, 95141 Lužianky, Slovakia
- Correspondence: ; Tel.: +421-37-654-6258
| | - Linda Dujíčková
- Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecká 2, 95141 Lužianky, Slovakia
- Department of Botany and Genetics, Constantine the Philosopher University Nitra, Tr. A. Hlinku 1, 94974 Nitra, Slovakia
| | - Alexander V. Makarevich
- Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecká 2, 95141 Lužianky, Slovakia
| | - Jiří Bezdíček
- Department of Zoology, Faculty of Science, Palacký University Olomouc, 17. Listopadu 50, 77900 Olomouc, Czech Republic
| | - Jana Sekaninová
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Andrea Nesvadbová
- Department of Zoology, Faculty of Science, Palacký University Olomouc, 17. Listopadu 50, 77900 Olomouc, Czech Republic
| | - Peter Chrenek
- Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecká 2, 95141 Lužianky, Slovakia
- Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
11
|
Gonzalez‐Plaza A, Brullo C, Cambra JM, Garcia M, Iacono E, Parrilla I, Gil MA, Martinez EA, Martinez CA, Cuello C. Equilibration time with cryoprotectants, but not melatonin supplementation during in vitro maturation, affects viability and metaphase plate morphology of vitrified porcine mature oocytes. Reprod Domest Anim 2022; 57 Suppl 5:58-63. [PMID: 35567517 PMCID: PMC9790282 DOI: 10.1111/rda.14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
The aims of this study were to investigate the effects of different equilibration times with cryoprotectants on viability and metaphase plate morphology of vitrified-warmed porcine mature oocytes (Experiment 1) and to evaluate the effects of supplementation with 10-9 M melatonin during in vitro maturation on these parameters (Experiment 2). In Experiment 1, 2,392 mature oocytes were vitrified using different equilibration times of oocytes with cryoprotectants (3, 10, 15, 20, 30, 40, 60 and 80 min). Fresh oocytes matured in vitro for 44 hr (n = 509) were used as controls. In Experiment 2, a total of 573 COCs were used. COCs were matured with 10-9 M melatonin supplementation or without melatonin (control). Some oocytes from each group were vitrified with a 60-min equilibration time with cryoprotectants according to the results of Experiment 1. The remaining oocytes from each maturation group were used as fresh control groups. In both experiments, oocytes were stained with 2',7'-dichlorodihydrofuorescein diacetate and Hoechst 33342 to assess viability and metaphase plate morphology, respectively. Vitrification and warming affected (p < .01) oocyte viability compared with controls, which were all viable after 44 hr of IVM. In Experiment 1, the longer the equilibration time with cryoprotectants, the higher the viability. Oocytes equilibrated for 60 and 80 min had the highest (p < .05) viability and similar metaphase plate characteristics to the fresh control oocytes. In Experiment 2, supplementation with melatonin during in vitro maturation had no effect on oocyte viability or metaphase plate morphology of vitrified-warmed oocytes. In conclusion, under our experimental conditions, vitrified porcine mature oocytes equilibrated with cryoprotectants for 60 or 80 min exhibited the highest viability and similar metaphase plate characteristics to fresh controls. Furthermore, supplementation with 10-9 M melatonin during in vitro maturation had no effect on these parameters.
Collapse
Affiliation(s)
- Alejandro Gonzalez‐Plaza
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN)University of MurciaMurciaSpain,Institute for Biomedical Research of Murcia (IMIB‐Arrixaca)MurciaSpain
| | - Cristiano Brullo
- Department of Veterinary Medical Sciences and CIRI‐SDVUniversity of BolognaBolognaItaly
| | - Josep M. Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN)University of MurciaMurciaSpain,Institute for Biomedical Research of Murcia (IMIB‐Arrixaca)MurciaSpain
| | - Manuela Garcia
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN)University of MurciaMurciaSpain,Institute for Biomedical Research of Murcia (IMIB‐Arrixaca)MurciaSpain
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences and CIRI‐SDVUniversity of BolognaBolognaItaly
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN)University of MurciaMurciaSpain,Institute for Biomedical Research of Murcia (IMIB‐Arrixaca)MurciaSpain
| | - Maria Antonia Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN)University of MurciaMurciaSpain,Institute for Biomedical Research of Murcia (IMIB‐Arrixaca)MurciaSpain
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN)University of MurciaMurciaSpain,Institute for Biomedical Research of Murcia (IMIB‐Arrixaca)MurciaSpain
| | - Cristina A. Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health SciencesLinköping UniversityLinköpingSweden
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (CMN)University of MurciaMurciaSpain,Institute for Biomedical Research of Murcia (IMIB‐Arrixaca)MurciaSpain
| |
Collapse
|
12
|
Xu J, Sun L, Wu C, Zhang S, Ju S, Rui R, Zhang D, Dai J. Involvement of PINK1/Parkin-mediated mitophagy in mitochondrial functional disruption under oxidative stress in vitrified porcine oocytes. Theriogenology 2021; 174:160-168. [PMID: 34455243 DOI: 10.1016/j.theriogenology.2021.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/14/2021] [Accepted: 08/24/2021] [Indexed: 01/07/2023]
Abstract
Vitrification is an effective technique for fertility preservation, but is known to lead to mitochondrial dysfunction in porcine oocytes. Mitophagy is induced to rebalance mitochondrial function, a process in which reactive oxygen species (ROS) plays a role. In this study, vitrified-warmed porcine oocytes were incubated for 4 h with the oxidant AAPH or antioxidant α-tocopherol to alter ROS levels. A series of tests suggested that vitrification damaged mitochondrial structure and caused dysfunction, including blurred mitochondrial cristae, decreased mitochondrial membrane potential, decreased mtDNA copy number and increased ROS generation. This dysfunction resulted in mitophagy and the loss of embryonic developmental potential. Incubation with AAPH or α-tocopherol altered mitochondrial function and mitophagy flux status in vitrified oocytes. The PINK1/Parkin pathway was involved in oxidative stress regulation in vitrified oocytes. Under AAPH-induced oxidative stress, increased fluorescence intensity of Parkin, increased expression of PINK1, Parkin, and LC3B-II, and decreased expression of MFN2 and p62 were observed, whereas the opposite effects were induced under α-tocopherol treatment. The inhibition of ROS by α-tocopherol benefitted mitochondrial homeostasis and alleviated PINK1/Parkin-mediated mitophagy, resulting in the recovery of embryonic developmental potential in vitrified porcine oocytes. Therefore, this study provides a new mechanism for the application of antioxidants to aid the cryopreservation of porcine oocytes.
Collapse
Affiliation(s)
- Jiehuan Xu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China; College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Lingwei Sun
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Caifeng Wu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Shushan Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Shiqiang Ju
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Rong Rui
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Defu Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| | - Jianjun Dai
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
13
|
Tharasanit T, Thuwanut P. Oocyte Cryopreservation in Domestic Animals and Humans: Principles, Techniques and Updated Outcomes. Animals (Basel) 2021; 11:ani11102949. [PMID: 34679970 PMCID: PMC8533007 DOI: 10.3390/ani11102949] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022] Open
Abstract
Oocyte cryopreservation plays important roles in basic research and the application of models for genetic preservation and in clinical situations. This technology provides long-term storage of gametes for genetic banking and subsequent use with other assisted reproductive technologies. Until recently, oocytes have remained the most difficult cell type to freeze, as the oocytes per se are large with limited surface area to cytoplasm ratio. They are also highly sensitive to damage during cryopreservation, and therefore the success rate of oocyte cryopreservation is generally poor when compared to noncryopreserved oocytes. Although advancement in oocyte cryopreservation has progressed rapidly for decades, the improvement of cryosurvival and clinical outcomes is still required. This review focuses on the principles, techniques, outcomes and prospects of oocyte cryopreservation in domestic animals and humans.
Collapse
Affiliation(s)
- Theerawat Tharasanit
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Bangkok 10330, Thailand
- Veterinary Clinical Stem Cells and Bioengineering Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| | - Paweena Thuwanut
- Department of Obstetrics and Gynecology, Division of Reproductive Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
14
|
Melatonin Promotes In Vitro Maturation of Vitrified-Warmed Mouse Germinal Vesicle Oocytes, Potentially by Reducing Oxidative Stress through the Nrf2 Pathway. Animals (Basel) 2021; 11:ani11082324. [PMID: 34438783 PMCID: PMC8388487 DOI: 10.3390/ani11082324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cryopreservation of oocytes can cause high oxidative stress, reduce the quality of vitrified-warmed oocytes, and seriously hinder the application of oocyte cryopreservation technology in production and medicine. In this work, we found for the first time that melatonin can exert antioxidant effects through receptors and regulate the Nrf2 antioxidant pathway to respond to oxidative stress of vitrified-warmed oocytes, thereby improving both oocyte quality and the potential for subsequent development. The results illustrated the molecular mechanism of melatonin’s antioxidant effect in vitrified-warmed oocytes and provided a theoretical basis for the application of melatonin in the cryopreservation of oocytes. These findings are of great significance for the further application of oocyte cryopreservation technology to production and assisted reproduction in the future. Abstract Previously it was reported that melatonin could mitigate oxidative stress caused by oocyte cryopreservation; however, the underlying molecular mechanisms which cause this remain unclear. The objective was to explore whether melatonin could reduce oxidative stress during in vitro maturation of vitrified-warmed mouse germinal vesicle (GV) oocytes through the Nrf2 signaling pathway or its receptors. During in vitro maturation of vitrified-warmed mouse GV oocytes, there were decreases (p < 0.05) in the development rates of metaphase I (MI) oocytes and metaphase II (MII) and spindle morphology grades; increases (p < 0.05) in the reactive oxygen species (ROS) levels; and decreases (p < 0.05) in expressions of Nrf2 signaling pathway-related genes (Nrf2, SOD1) and proteins (Nrf2, HO-1). However, adding 10−7 mol/L melatonin to both the warming solution and maturation solutions improved (p < 0.05) these indicators. When the Nrf2 protein was specifically inhibited by Brusatol, melatonin did not increase development rates, spindle morphology grades, genes, or protein expressions, nor did it reduce vitrification-induced intracellular oxidative stress in GV oocytes during in vitro maturation. In addition, when melatonin receptors were inhibited by luzindole, the ability of melatonin to scavenge intracellular ROS was decreased, and the expressions of genes (Nrf2, SOD1) and proteins (Nrf2, HO-1) were not restored to control levels. Therefore, we concluded that 10−7 mol/L melatonin acted on the Nrf2 signaling pathway through its receptors to regulate the expression of genes (Nrf2, SOD1) and proteins (Nrf2, HO-1), and mitigate intracellular oxidative stress, thereby enhancing in vitro development of vitrified-warmed mouse GV oocytes.
Collapse
|