1
|
Miglio A, Rocconi F, Cremoni V, D'Alessandro A, Reisz JA, Maslanka M, Lacroix IS, Di Francesco D, Antognoni MT, Di Tommaso M. Effect of leukoreduction on the omics phenotypes of canine packed red blood cells during refrigerated storage. J Vet Intern Med 2024; 38:1498-1511. [PMID: 38553798 PMCID: PMC11099828 DOI: 10.1111/jvim.17031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/16/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Red blood cell (RBC) storage promotes biochemical and morphological alterations, collectively referred to as storage lesions (SLs). Studies in humans have identified leukoreduction (LR) as a critical processing step that mitigates SLs. To date no study has evaluated the impact of LR on metabolic SLs in canine blood units using omics technologies. OBJECTIVE Compare the lipid and metabolic profiles of canine packed RBC (pRBC) units as a function of LR in fresh and stored refrigerated (up to 42 days) units. ANIMALS Packed RBC units were obtained from 8 donor dogs enrolled at 2 different Italian veterinary blood banks. STUDY DESIGN AND METHODS Observational study. A volume of 450 mL of whole blood was collected using Citrate-Phosphate-Dextrose-Saline-Adenine-Glucose-Mannitol (CPD-SAGM) transfusion bags with a LR filter to produce 2 pRBC units for each donor, without (nLR-pRBC) and with (LR-pRBC) LR. Units were stored in the blood bank at 4 ± 2°C. Sterile weekly samples were obtained from each unit for omics analyses. RESULTS A significant effect of LR on fresh and stored RBC metabolic phenotypes was observed. The nLR-pRBC were characterized by higher concentrations of free short and medium-chain fatty acids, carboxylic acids (pyruvate, lactate), and amino acids (arginine, cystine). The LR-pRBC had higher concentrations of glycolytic metabolites, high energy phosphate compounds (adenosine triphosphate [ATP]), and antioxidant metabolites (pentose phosphate, total glutathione). CONCLUSION AND CLINICAL IMPORTANCE Leukoreduction decreases the metabolic SLs of canine pRBC by preserving energy metabolism and preventing oxidative lesions.
Collapse
Affiliation(s)
- Arianna Miglio
- Department of Veterinary MedicineUniversity of Perugia, Via San Costanzo 4Perugia 06126Italy
| | - Francesca Rocconi
- Department of Veterinary MedicineVeterinary University Hospital, University of Teramo, Località Piano D'AccioTeramo 64100Italy
| | - Valentina Cremoni
- Department of Veterinary MedicineUniversity of Perugia, Via San Costanzo 4Perugia 06126Italy
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver – Anschutz Medical CampusAuroraColoradoUSA
| | - Julie A. Reisz
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver – Anschutz Medical CampusAuroraColoradoUSA
| | - Mark Maslanka
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver – Anschutz Medical CampusAuroraColoradoUSA
| | - Ian S. Lacroix
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver – Anschutz Medical CampusAuroraColoradoUSA
| | - Daniela Di Francesco
- Department of Veterinary MedicineUniversity of Perugia, Via San Costanzo 4Perugia 06126Italy
| | - Maria T. Antognoni
- Department of Veterinary MedicineUniversity of Perugia, Via San Costanzo 4Perugia 06126Italy
| | - Morena Di Tommaso
- Department of Veterinary MedicineVeterinary University Hospital, University of Teramo, Località Piano D'AccioTeramo 64100Italy
| |
Collapse
|
2
|
González-Arostegui LG, Muñoz-Prieto A, Rubio CP, Cerón JJ, Bernal L, Rubić I, Mrljak V, González-Sánchez JC, Tvarijonaviciute A. Changes of the salivary and serum proteome in canine hypothyroidism. Domest Anim Endocrinol 2024; 86:106825. [PMID: 37980820 DOI: 10.1016/j.domaniend.2023.106825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023]
Abstract
In this study, changes in salivary and serum proteome of dogs with hypothyroidism were studied using tandem mass tags (TMT) labelling and liquid chromatography-mass spectrometry (LC-MS/MS). Saliva and serum proteome from 10 dogs with hypothyroidism were compared with 10 healthy dogs. In saliva, a total of seven proteins showed significant changes between the two groups, being six downregulated and one upregulated, meanwhile, in serum, a total of six proteins showed significant changes, being five downregulated and one upregulated. The altered proteins reflected metabolic and immunologic changes, as well as, skin and coagulation alterations, and these proteins were not affected by gender. One of the proteins that were downregulated in saliva, lactate dehydrognease (LDH), was measured by a spectrophotometric assay in saliva samples from 42 dogs with hypothyroidism, 42 dogs with non-thyroid diseases and 46 healthy dogs. The activity of LDH was lower in the saliva of hypothyroid dogs when compared to non-thyroid diseased dogs and healthy controls. This study indicates that canine hypothyroidism can produce changes in the proteome of saliva and serum. These two sample types showed different variations in their proteins reflecting physiopathological changes that occur in this disease, mainly related to the immune system, metabolism, skin and coagulation. In addition, some of the proteins identified in this study, specially LDH in saliva, should be further explored as potential biomarkers of canine hypothyroidism.
Collapse
Affiliation(s)
- L G González-Arostegui
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, 30100 Murcia, Spain
| | - A Muñoz-Prieto
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, 30100 Murcia, Spain
| | - C P Rubio
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, 30100 Murcia, Spain
| | - J J Cerón
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, 30100 Murcia, Spain
| | - L Bernal
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, 30100 Murcia, Spain
| | - I Rubić
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 1000 Zagreb, Croatia
| | - V Mrljak
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 1000 Zagreb, Croatia
| | - J C González-Sánchez
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - A Tvarijonaviciute
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
3
|
Shao F, Li R, Guo Q, Qin R, Su W, Yin H, Tian L. Plasma Metabolomics Reveals Systemic Metabolic Alterations of Subclinical and Clinical Hypothyroidism. J Clin Endocrinol Metab 2022; 108:13-25. [PMID: 36181451 PMCID: PMC9759175 DOI: 10.1210/clinem/dgac555] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2022] [Indexed: 02/03/2023]
Abstract
CONTEXT Clinical hypothyroidism (CH) and subclinical hypothyroidism (SCH) have been linked to various metabolic comorbidities but the underlying metabolic alterations remain unclear. Metabolomics may provide metabolic insights into the pathophysiology of hypothyroidism. OBJECTIVE We explored metabolic alterations in SCH and CH and identify potential metabolite biomarkers for the discrimination of SCH and CH from euthyroid individuals. METHODS Plasma samples from a cohort of 126 human subjects, including 45 patients with CH, 41 patients with SCH, and 40 euthyroid controls, were analyzed by high-resolution mass spectrometry-based metabolomics. Data were processed by multivariate principal components analysis and orthogonal partial least squares discriminant analysis. Correlation analysis was performed by a Multivariate Linear Regression analysis. Unbiased Variable selection in R algorithm and 3 machine learning models were utilized to develop prediction models based on potential metabolite biomarkers. RESULTS The plasma metabolomic patterns in SCH and CH groups were significantly different from those of control groups, while metabolite alterations between SCH and CH groups were dramatically similar. Pathway enrichment analysis found that SCH and CH had a significant impact on primary bile acid biosynthesis, steroid hormone biosynthesis, lysine degradation, tryptophan metabolism, and purine metabolism. Significant associations for 65 metabolites were found with levels of thyrotropin, free thyroxine, thyroid peroxidase antibody, or thyroglobulin antibody. We successfully selected and validated 17 metabolic biomarkers to differentiate 3 groups. CONCLUSION SCH and CH have significantly altered metabolic patterns associated with hypothyroidism, and metabolomics coupled with machine learning algorithms can be used to develop diagnostic models based on selected metabolites.
Collapse
Affiliation(s)
| | | | - Qian Guo
- Department of Endocrinology (Cadre Ward 3), Gansu Provincial Hospital, Lanzhou, Gansu 730099, China
- Clinical Research Center for Metabolic Disease, Gansu Province. 204 Donggang West Road, Lanzhou, Gansu 730099, China
| | - Rui Qin
- Clinical Research Center for Metabolic Disease, Gansu Province. 204 Donggang West Road, Lanzhou, Gansu 730099, China
| | - Wenxiu Su
- Clinical Research Center for Metabolic Disease, Gansu Province. 204 Donggang West Road, Lanzhou, Gansu 730099, China
| | - Huiyong Yin
- Correspondence: Limin Tian, M.D., The First School of Clinical Medicine, Lanzhou University, Gansu Provincial Hospital, Donggang West Road, 730030, Lanzhou, Gansu, China. ; Huiyong Yin, Ph.D., Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China 200031.
| | - Limin Tian
- Correspondence: Limin Tian, M.D., The First School of Clinical Medicine, Lanzhou University, Gansu Provincial Hospital, Donggang West Road, 730030, Lanzhou, Gansu, China. ; Huiyong Yin, Ph.D., Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China 200031.
| |
Collapse
|
4
|
González-Arostegui LG, Rubio CP, Rubić I, Rafaj RB, Gotić J, Cerón JJ, Tvarijonaviciute A, Mrljak V, Muñoz-Prieto A. Changes in the salivary metabolome in canine hypothyroidism: A pilot study. Res Vet Sci 2022; 151:189-195. [DOI: 10.1016/j.rvsc.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022]
|
5
|
Deciphering the Metabolomics-Based Intervention of Yanghe Decoction on Hashimoto's Thyroiditis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6215573. [PMID: 35873647 PMCID: PMC9307328 DOI: 10.1155/2022/6215573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022]
Abstract
Background Yanghe decoction is a famous formula consisting of Rehmannia, deer horn gum, cinnamon, rue, Ephedra, ginger charcoal, and licorice. However, few studies have explored the role of the potential mechanism of Yanghe decoction in the treatment of Hashimoto's thyroiditis by metabolomics. Methods Nine mice were randomly divided into three groups: control group (group C), model group (group M), and drug administration group (group T), with three mice in each group. Mice in groups M and T were established as models of Hashimoto's thyroiditis, and group T was treated with Yanghe decoction. The metabolome of plasma samples from each group of mice was determined using mass spectrometry coupled with high-performance liquid and gas phases, and nuclear magnetic resonance. Based on the three assays, principal component analysis was performed on all samples, as well as orthogonal partial least squares-discriminant analysis and differential metabolite molecules for groups M and T. Subsequently, pathway enrichment analysis was performed, and the intersection was taken for the differential metabolites screened in the M and T groups. The levels of inflammatory factors IL-35 and IL-6 within the serum of each group of mice were detected. Results The difference analysis showed that a total of 38 differential metabolites were screened based on mass spectrometry coupled with the high-performance liquid phase, 120 differential metabolites were screened based on mass spectrometry coupled with gas phase, and a total of α-glucose and β-glucose were the differential metabolites analyzed based on NMR test results. The pathways enriched by the differential metabolites in the M and T groups were intersected, and a total of 5 common pathways were obtained (amino acid tRNA biosynthesis, D-glutamine and D-glutamate metabolism, tryptophan metabolism, nitrogen metabolism, and arginine and proline metabolism). The results also showed a significant decrease in the serum inflammatory factor IL-35 and a significant increase in IL-6 in mice from group M compared with group C, while a significant increase in the serum inflammatory factor IL-35 and a significant decrease in IL-6 in mice from group T compared with group M. Conclusion Our study reveals the metabolites as well as a metabolic network that can be altered by Yanghe decoction treatment of Hashimoto's thyroiditis and shows that Yanghe decoction can effectively reduce the level of inflammatory factors in Hashimoto's thyroid.
Collapse
|
6
|
Kuleš J, Rubić I, Beer Ljubić B, Bilić P, Barić Rafaj R, Brkljačić M, Burchmore R, Eckersall D, Mrljak V. Combined Untargeted and Targeted Metabolomics Approaches Reveal Urinary Changes of Amino Acids and Energy Metabolism in Canine Babesiosis With Different Levels of Kidney Function. Front Microbiol 2021; 12:715701. [PMID: 34603243 PMCID: PMC8484968 DOI: 10.3389/fmicb.2021.715701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Canine babesiosis is a tick-borne disease with a worldwide distribution, caused by the haemoprotozoan parasites of the genus Babesia. One of the most prevalent complication is acute kidney injury, and an early diagnosis of altered kidney function remains a challenge for veterinary practice. The aim of this study was to assess the urine metabolic profile from dogs with babesiosis and different degree of kidney function using untargeted and targeted MS-based metabolomics approaches. In this study, 22 dogs naturally infected with Babesia canis and 12 healthy dogs were included. Untargeted metabolomics approach identified 601 features with a differential abundance between the healthy group and groups of dogs with babesiosis and different level of kidney function, with 27 of them identified as a match to known standards; while targeted approach identified 17 metabolites with significantly different concentrations between the groups. A pattern of significantly altered metabolites referring to the inflammatory host response, oxidative stress, and energy metabolism modulation in babesiosis was presented. Our findings have demonstrated that kidney dysfunction accompanying canine babesiosis was associated with changes in amino acid metabolism, energy metabolism, fatty acid metabolism, and biochemical pathways such as urea cycle and ammonia detoxication. These findings will enable the inclusion of urinary markers for the detection and monitoring of renal damage in babesiosis, as well as in other similar diseases.
Collapse
Affiliation(s)
- Josipa Kuleš
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Blanka Beer Ljubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Petra Bilić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Renata Barić Rafaj
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Mirna Brkljačić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Richard Burchmore
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - David Eckersall
- College of Medical, Veterinary, and Life Sciences, Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Vladimir Mrljak
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|