1
|
Wei R, Zhang Z, Han H, Miao J, Yu P, Cheng H, Zhao W, Hou X, Wang J, He Y, Fu Y, Wang Z, Wang Q, Zhang Z, Pan Y. Integrative genomic analysis reveals shared loci for reproduction and production traits in Yorkshire pigs. BMC Genomics 2025; 26:310. [PMID: 40158163 PMCID: PMC11954345 DOI: 10.1186/s12864-025-11416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/28/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Improving reproductive performance in Yorkshire pigs, a key maternal line in three-way crossbreeding systems, remains challenging due to low heritability and historical selection pressures favoring production traits. Identifying pleiotropic genetic variants that influence both reproduction and production traits is crucial for understanding their genetic interplay and enhancing molecular breeding strategies. RESULTS Genome-wide association studies (GWAS) using 2,764 individuals identified 264,660 significant loci associated with reproduction traits and 12,460 loci for production traits, with 73 independent signals, including genes such as SCLT1 and CAPN9. A total of 465,047 independent loci were identified, resulting in a genome-wide significance threshold of 2.15 × 10 - 6 . Genetic correlations analysis between reproduction and production traits across parities revealed varying trends, including a strengthening negative correlation between mean litter weight (MLW) and backfat thickness (BFT) with increasing parity (P1: r g =-0.0376; P2: r g =-0.1371; P3: r g =-0.1475). Given 1062 shared significant loci between MLW and BFT, local genetic correlation was calculated within the corresponding genomic regions, resulting in a weak correlation of 0.014. Transcriptome-wide association studies (TWAS) leveraging data from the PigGTEx project, which includes 9,530 RNA-sequencing samples across 34 tissues, revealed 2,143 significant genes, with 31 linked to total number of piglets born (TNB) and 133 to number of piglets born alive (NBA). These results highlight the importance of these genes in reproductive performance, with SCLT1 being notably significant in reproductive tissues. For MLW, integrating results from multiple analyses revealed CENPE as a strong candidate gene, exhibiting significant association and colocalization. Validation in an independent population (n = 300) showed that incorporating the top 0.2% of significant single nucleotide polymorphisms (SNPs) in the GFBLUP model improved predictive accuracy, increasing from 0.0168 to 0.0242 for MLW. CONCLUSION This study provides new insights into the pleiotropic genetic architecture underlying reproduction and production traits in Yorkshire pigs. Genetic correlations, shared loci, and candidate genes inform breeding program design. The increased accuracy of genomic selection using these significant loci highlights their practical utility in improving breeding efficiency. These findings suggest opportunities for refining selection strategies, although further research is warranted to fully realize their potential for enhancing breeding programs.
Collapse
Affiliation(s)
- Ran Wei
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyang Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - He Han
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Miao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pengfei Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- SciGene Biotechnology Co., Ltd, Hefei, 230022, China
| | - Xiaoliang Hou
- SciGene Biotechnology Co., Ltd, Hefei, 230022, China
| | - Jianlan Wang
- SciGene Biotechnology Co., Ltd, Hefei, 230022, China
| | - Yongqi He
- SciGene Biotechnology Co., Ltd, Hefei, 230022, China
| | - Yan Fu
- SciGene Biotechnology Co., Ltd, Hefei, 230022, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China
| | - Zhe Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yuchun Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, China.
| |
Collapse
|
2
|
Chen Q, Yang D, Chen M, Xiong J, Huang J, Ding W, Gao K, Lai B, Zheng L, Tang Z, Zhang M, Yan T, He Z. Smad4 and FoxH1 potentially interact to regulate cyp19a1a promoter in the ovary of ricefield eel (Monopterus albus). Biol Sex Differ 2024; 15:60. [PMID: 39080808 PMCID: PMC11290265 DOI: 10.1186/s13293-024-00636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Cyp19a1a is a key enzyme in the pathway that converts androgens into estrogen and is regulated by TGF-β signaling. Smad4 and FoxH1 are downstream effectors of TGF-β signaling and may play important roles in ovarian development in M. albus. METHODS We investigated the expression pattern of the Smad4 and FoxH1 using qRT‒PCR and immunofluorescence, then tested the changes of smad4 and foxh1 by qRT‒PCR after ovary incubation with FSH in vitro, and analysed the regulation of cyp19a1a transcription by Smad4 and FoxH1 by dual-luciferase reporter assays. RESULTS We found that Smad4 encoded a putative protein of 449 amino acids and harbored the three conserved domains typical of this protein family. Smad4 and foxh1 exhibited similar expression patterns during ovarian development and after FSH incubation, with Pearson's coefficients of 0.873 and 0.63-0.81, respectively. Furthermore, Smad4, FoxH1 and Cyp19a1a colocalized in the granulosa cells and theca cells of ovaries during the mid-to-late vitellogenic stage. Smad4 repressed cyp19a1a activity via SBE1 (- 1372/-1364) and SBE2 (- 415/-407) in the cyp19a1a promoter, whereas mutating SBE1 or SBE2 restored cyp19a1a promoter activity. Co-overexpression of Smad4 and FoxH1 significantly reduced cyp19a1a promoter activity. CONCLUSIONS This study provides new insights into the potential functions of transcription factors Smad4 and FoxH1 in ovarian development and the transcriptional regulation mechanism of cyp19a1a in M. albus, which will reveal Smad4/FoxH1-mediated TGF-β signaling in reproduction and the regulation of the cyp19a1a. Aromatase, encoded by cyp19a1a, is involved in ovarian development and plays an important role in the quality of eggs, as well the sex ratio, of the teleost fish, M. albus. The research on the transcriptional regulation of cyp19a1a has contributed to the understanding of its role in ovarian development. In previous study, it was shown that FoxH1 inhibits cyp19a1a transcription. In the present study, Smad4 was confirmed as a cyp19a1a transcriptional repressor and Smad4 may also coordinate with FoxH1 to repress cyp19a1a transcription. At present, we provide a new perspective for the transcriptional regulation of cyp19a1a by transcription factors Smad4 and FoxH1 in teleost fish ovary. In the future, the regulatory networks of Smad4 and FoxH1 will be further studied and the gene editing technology will be applied to screen specific regulatory factors of cyp191a1a gene, so as to alter the female cycle and modulate the sex ratio of the eggs production.
Collapse
Affiliation(s)
- Qiqi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingqiang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinxin Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junjie Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenxiang Ding
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kuo Gao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bolin Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziting Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Ju W, Zhao S, Wu H, Yu Y, Li Y, Liu D, Lian F, Xiang S. miR-6881-3p contributes to diminished ovarian reserve by regulating granulosa cell apoptosis by targeting SMAD4. Reprod Biol Endocrinol 2024; 22:17. [PMID: 38297261 PMCID: PMC10832098 DOI: 10.1186/s12958-024-01189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND In our previous investigation, we revealed a significant increase in the expression of microRNA-6881-3p (miR-6881-3p) in follicular fluid granulosa cells (GCs) from women with diminished ovarian reserve (DOR) compared to those with normal ovarian reserve (NOR). However, the role of miR-6881-3p in the development of DOR remains poorly understood. OBJECTIVE This study aimed to elucidate the involvement of miR-6881-3p in the regulation of granulosa cells (GCs) function and the pathogenesis of DOR. MATERIALS AND METHODS Initially, we assessed the expression levels of miR-6881-3p in GCs obtained from human follicular fluid in both NOR and DOR cases and explored the correlation between miR-6881-3p expression and clinical outcomes in assisted reproduction technology (ART). Bioinformatic predictions and dual-luciferase reporter assays were employed to identify the target gene of miR-6881-3p. Manipulation of miR-6881-3p expression was achieved through the transfection of KGN cells with miR-6881-3p mimics, inhibitor, and miRNA negative control (NC). Following transfection, we assessed granulosa cell apoptosis and cell cycle progression via flow cytometry and quantified target gene expression through quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) analysis. Finally, we examined the correlation between target gene expression levels in GCs from NOR and DOR patients and their association with ART outcomes. RESULTS Our findings revealed elevated miR-6881-3p levels in GCs from DOR patients, which negatively correlated with ovarian reserve function and ART outcomes. We identified a direct binding interaction between miR-6881-3p and the 3'-untranslated region of the SMAD4. Transfection with miR-6881-3p mimics induced apoptosis in KGN cell. Furthermore, miR-6881-3p expression negatively correlated with both mRNA and protein levels of the SMAD4. The mRNA and protein levels of SMAD4 were notably reduced in GCs from DOR patients, and SMAD4 mRNA expression positively correlated with ART outcomes. In addition, the mRNA levels of FSHR, CYP11A1 were notably reduced after transfection with miR-6881-3p mimics in KGN cell, while LHCGR notably increased. The mRNA and protein levels of FSHR, CYP11A1 were notably reduced in GCs from DOR patients, while LHCGR notably increased. CONCLUSION This study underscores the role of miR-6881-3p in directly targeting SMAD4 mRNA, subsequently diminishing granulosa cell viability and promoting apoptosis, and may affect steroid hormone regulation and gonadotropin signal reception in GCs. These findings contribute to our understanding of the pathogenesis of DOR.
Collapse
Affiliation(s)
- Wenhan Ju
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuai Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haicui Wu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Danqi Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fang Lian
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Shan Xiang
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Leng D, Ge L, Sun J. Characterization analysis of Rongchang pig population based on the Zhongxin-1 Porcine Breeding Array PLUS. Anim Biosci 2023; 36:1508-1516. [PMID: 37402459 PMCID: PMC10475371 DOI: 10.5713/ab.23.0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/29/2023] [Accepted: 05/17/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE To carry out a comprehensive production planning of the existing Rongchang pig population from both environmental and genetic aspects, and to establish a closed population with stable genetic diversity and strict pathogen control, it is necessary to fully understand the genetic background of the population. METHODS We genotyped 54 specific pathogen free (SPF) Rongchang pigs using the Zhongxin-1 Porcine Breeding Array PLUS, calculated their genetic diversity parameters and constructed their families. In addition, we also counted the runs of homozygosity (ROH) of each individual and calculated the value of inbreeding coefficient based on ROH for each individual. RESULTS Firstly, the results of genetic diversity analysis showed that the effective population size (Ne) of this population was 3.2, proportion of polymorphic markers (PN) was 0.515, desired heterozygosity (He) and observed heterozygosity (Ho) were 0.315 and 0.335. Ho was higher than He, indicating that the heterozygosity of all the selected loci was high. Secondly, combining the results of genomic relatedness analysis and cluster analysis, it was found that the existing Rongchang pig population could be divided into four families. Finally, we also counted the ROH of each individual and calculated the inbreeding coefficient value accordingly, whose mean value was 0.09. CONCLUSION Due to the limitation of population size and other factors, the genetic diversity of this Rongchang pig population is low. The results of this study can provide basic data to support the development of Rongchang pig breeding program, the establishment of SPF Rongchang pig closed herd and its experimental utilization.
Collapse
Affiliation(s)
- Dong Leng
- Chongqing Academy of Animal Science, Chongqing 404100,
China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130,
China
| | - Liangpeng Ge
- Chongqing Academy of Animal Science, Chongqing 404100,
China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 404100,
China
- National Center of Technology Innovation for Swine, Chongqing 404100,
China
| | - Jing Sun
- Chongqing Academy of Animal Science, Chongqing 404100,
China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 404100,
China
- National Center of Technology Innovation for Swine, Chongqing 404100,
China
| |
Collapse
|