1
|
Chatman CC, Olson EG, Freedman AJ, Dittoe DK, Ricke SC, Majumder ELW. Co-exposure to polyethylene fiber and Salmonella enterica serovar Typhimurium alters microbiome and metabolome of in vitro chicken cecal mesocosms. Appl Environ Microbiol 2024; 90:e0091524. [PMID: 38984844 PMCID: PMC11337840 DOI: 10.1128/aem.00915-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 07/11/2024] Open
Abstract
Humans and animals encounter a summation of exposures during their lifetime (the exposome). In recent years, the scope of the exposome has begun to include microplastics. Microplastics (MPs) have increasingly been found in locations, including in animal gastrointestinal tracts, where there could be an interaction with Salmonella enterica serovar Typhimurium, one of the commonly isolated serovars from processed chicken. However, there is limited knowledge on how gut microbiomes are affected by microplastics and if an effect would be exacerbated by the presence of a pathogen. In this study, we aimed to determine if acute exposure to microplastics in vitro altered the gut microbiome membership and activity. The microbiota response to a 24 h co-exposure to Salmonella enterica serovar Typhimurium and/or low-density polyethylene (PE) microplastics in an in vitro broiler cecal model was determined using 16S rRNA amplicon sequencing (Illumina) and untargeted metabolomics. Community sequencing results indicated that PE fiber with and without S. Typhimurium yielded a lower Firmicutes/Bacteroides ratio compared with other treatment groups, which is associated with poor gut health, and overall had greater changes to the cecal microbial community composition. However, changes in the total metabolome were primarily driven by the presence of S. Typhimurium. Additionally, the co-exposure to PE fiber and S. Typhimurium caused greater cecal microbial community and metabolome changes than either exposure alone. Our results indicate that polymer shape is an important factor in effects resulting from exposure. It also demonstrates that microplastic-pathogen interactions cause metabolic alterations to the chicken cecal microbiome in an in vitro chicken cecal mesocosm. IMPORTANCE Researching the exposome, a summation of exposure to one's lifespan, will aid in determining the environmental factors that contribute to disease states. There is an emerging concern that microplastic-pathogen interactions in the gastrointestinal tract of broiler chickens may lead to an increase in Salmonella infection across flocks and eventually increased incidence of human salmonellosis cases. In this research article, we elucidated the effects of acute co-exposure to polyethylene microplastics and Salmonella enterica serovar Typhimurium on the ceca microbial community in vitro. Salmonella presence caused strong shifts in the cecal metabolome but not the microbiome. The inverse was true for polyethylene fiber. Polyethylene powder had almost no effect. The co-exposure had worse effects than either alone. This demonstrates that exposure effects to the gut microbial community are contaminant-specific. When combined, the interactions between exposures exacerbate changes to the gut environment, necessitating future experiments studying low-dose chronic exposure effects with in vivo model systems.
Collapse
Affiliation(s)
- Chamia C. Chatman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elena G. Olson
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Allison J. Freedman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dana K. Dittoe
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Steven C. Ricke
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Meat Science and Animal Biologics Discovery Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erica L-W. Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Abdollahzadeh Y, Mazandarani M, Hoseinifar SH, Lieke T, Van Doan H, Pourmozaffar S. Dietary fulvic acid improves immune, digestive and antioxidant parameters in juvenile white-leg shrimp (Litopenaeus vannamei) in a super-intensive system. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111011. [PMID: 39111539 DOI: 10.1016/j.cbpb.2024.111011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
In the current study, the effects of dietary fulvic acid supplementation at levels of 0.5, 1 and 2% were examined in white-leg shrimp, Litopenaeus vannamei. A significant increase in the weight of the shrimp was observed in the group treated with 2% fulvic acid in comparison to the control group. This may have been associated with an increased digestive efficiency, with the food conversion ratio reducing from 2.4 to 1.9, and increased hepatopancreatic amylase, protease, and lipase enzyme activities. Enhanced activity of hemolymph superoxide dismutase was suggestive of an enhanced immune capacity, while hemolymph cell count increased by 16.4 and 13.6% in shrimp receiving diets supplemented with 1 and 2% fulvic acid, respectively. Additionally, the number of large granular cells increased by 37.3% and 40.8% relative to the control in these two groups. Furthermore, the lysozyme activity increased in shrimp receiving dietary supplementation of 1% and 2% fulvic acid by 16.7% and 24.7%, respectively. Phenol oxidase activity, which activates phagocytosis and encapsulation of invading pathogens, increased in all groups supplemented with fulvic acid, with the highest activity in the 1% fulvic acid group. Overall the present results suggest that fulvic acid is a promising feed additive for white-leg shrimp super-intensive culture.
Collapse
Affiliation(s)
- Younes Abdollahzadeh
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Mazandarani
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Thora Lieke
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic. https://twitter.com/Thora_Lieke
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sajjad Pourmozaffar
- Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Bandar-e-Lengeh, Iran
| |
Collapse
|
3
|
Maguey-González JA, Liu J, Zhang G, Latorre JD, Hernández-Ramírez JO, de Jesús Nava-Ramírez M, Senas-Cuesta R, Gómez-Rosales S, de Lourdes Ángeles M, Stein A, Solís-Cruz B, Hernández-Patlán D, Merino-Guzmán R, Hernandez-Velasco X, Castellanos-Huerta I, Uribe-Diaz S, Vázquez-Durán A, Méndez-Albores A, Petrone-Garcia VM, Tellez Jr. G, Hargis BM, Téllez-Isaías G. Assessment of the Impact of Humic Acids on Intestinal Microbiota, Gut Integrity, Ileum Morphometry, and Cellular Immunity of Turkey Poults Fed an Aflatoxin B 1-Contaminated Diet. Toxins (Basel) 2024; 16:122. [PMID: 38535788 PMCID: PMC10975313 DOI: 10.3390/toxins16030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/13/2024] Open
Abstract
A recent study published data on the growth performance, relative weights of the organs of the gastrointestinal tract, liver histology, serum biochemistry, and hematological parameters for turkey poults fed an experimental diet contaminated with aflatoxin B1 (AFB1) and humic acids (HA) extracted from vermicompost. The negative effects of AFB1 (250 ng AFB1/g of feed) were significantly reduced by HA supplementation (0.25% w/w), suggesting that HA might be utilized to ameliorate the negative impact of AFB1 from contaminated diets. The present study shows the results of the remaining variables, as an extension of a previously published work which aimed to evaluate the impact of HA on the intestinal microbiota, gut integrity, ileum morphometry, and cellular immunity of turkey poults fed an AFB1-contaminated diet. For this objective, five equal groups of 1-day-old female Nicholas-700 turkey poults were randomly assigned to the following treatments: negative control (basal diet), positive control (basal diet + 250 ng AFB1/g), HA (basal diet + 0.25% HA), HA + AFB1 (basal diet + 0.25% HA + 250 ng AFB1/g), and Zeolite (basal diet + 0.25% zeolite + 250 ng AFB1/g). In the experiment, seven replicates of ten poults each were used per treatment (n = 70). In general, HA supplementation with or without the presence of AFB1 showed a significant increase (p < 0.05) in the number of beneficial butyric acid producers, ileum villi height, and ileum total area, and a significant reduction in serum levels of fluorescein isothiocyanate-dextran (FITC-d), a marker of intestinal integrity. In contrast, poults fed with AFB1 showed a significant increase in Proteobacteria and lower numbers of beneficial bacteria, clearly suggesting gut dysbacteriosis. Moreover, poults supplemented with AFB1 displayed the lowest morphometric parameters and the highest intestinal permeability. Furthermore, poults in the negative and positive control treatments had the lowest cutaneous basophil hypersensitivity response. These findings suggest that HA supplementation enhanced intestinal integrity (shape and permeability), cellular immune response, and healthier gut microbiota composition, even in the presence of dietary exposure to AFB1. These results complement those of the previously published study, suggesting that HA may be a viable dietary intervention to improve gut health and immunity in turkey poults during aflatoxicosis.
Collapse
Affiliation(s)
- Jesús A. Maguey-González
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Jing Liu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Juan O. Hernández-Ramírez
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (J.O.H.-R.); (M.d.J.N.-R.); (A.V.-D.); (A.M.-A.)
| | - María de Jesús Nava-Ramírez
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (J.O.H.-R.); (M.d.J.N.-R.); (A.V.-D.); (A.M.-A.)
| | - Roberto Senas-Cuesta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Sergio Gómez-Rosales
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal (CENID-INIFAP), Km1 Carretera a Colon Ajuchitlán, Querétaro 76280, Mexico; (S.G.-R.); (M.d.L.Á.)
| | - María de Lourdes Ángeles
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal (CENID-INIFAP), Km1 Carretera a Colon Ajuchitlán, Querétaro 76280, Mexico; (S.G.-R.); (M.d.L.Á.)
| | - Andressa Stein
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Bruno Solís-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (B.S.-C.); (D.H.-P.)
- División de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Tultitlan 54910, Mexico
| | - Daniel Hernández-Patlán
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (B.S.-C.); (D.H.-P.)
- División de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Tultitlan 54910, Mexico
| | - Rubén Merino-Guzmán
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de México 04510, Mexico; (R.M.-G.); (X.H.-V.)
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de México 04510, Mexico; (R.M.-G.); (X.H.-V.)
| | - Inkar Castellanos-Huerta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Santiago Uribe-Diaz
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (J.O.H.-R.); (M.d.J.N.-R.); (A.V.-D.); (A.M.-A.)
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; (J.O.H.-R.); (M.d.J.N.-R.); (A.V.-D.); (A.M.-A.)
| | | | - Guillermo Tellez Jr.
- Department of Developmental Biology, Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK;
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| | - Guillermo Téllez-Isaías
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (J.D.L.); (R.S.-C.); (A.S.); (I.C.-H.); (S.U.-D.); (B.M.H.); (G.T.-I.)
| |
Collapse
|
4
|
Vašková J, Stupák M, Vidová Ugurbaş M, Žatko D, Vaško L. Therapeutic Efficiency of Humic Acids in Intoxications. Life (Basel) 2023; 13:life13040971. [PMID: 37109500 PMCID: PMC10143271 DOI: 10.3390/life13040971] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Humins, humic and fulvic acids represent molecules with complex structures. These compounds comprising humic substances (HS) exist naturally in soil, brown coal, peat, and water. They are formed during the decomposition and transformation of organic matter (animal and plant remains) and their formation explains several theories. Within their chemical structures, there are numerous phenolic and carboxyl groups and their derivatives that affect their different properties, such as their solubility in water or their absorption of cations or mycotoxins. The manifold chemical structure of HS alters their polyelectrolyte character and thus their chelating efficiency. For many years, HS have been studied due to their detoxification, anti-, and pro-inflammatory or anticancer and antiviral ability. This article summarizes the antioxidant and adsorption properties of humic acids, highlighting their usefulness in intoxications.
Collapse
Affiliation(s)
- Janka Vašková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Marek Stupák
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Martina Vidová Ugurbaş
- Second Department of Surgery, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Daniel Žatko
- Imuna Pharm, a.s., Šarišské Michaľany, 082 22 Presov, Slovakia
| | - Ladislav Vaško
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| |
Collapse
|
5
|
Hriciková S, Kožárová I, Hudáková N, Reitznerová A, Nagy J, Marcinčák S. Humic Substances as a Versatile Intermediary. Life (Basel) 2023; 13:life13040858. [PMID: 37109387 PMCID: PMC10142745 DOI: 10.3390/life13040858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Humic substances are organic ubiquitous components arising in the process of chemical and microbiological oxidation, generally called humification, the second largest process of the carbon cycle. The beneficial properties of these various substances can be observed in many fields of life and health, whether it is the impact on the human organism, as prophylactic as well as the therapeutic effects; animal physiology and welfare, which is widely used in livestock farming; or the impact of humic substances on the environment and ecosystem in the context of renewal, fertilization and detoxification. Since animal health, human health and environmental health are interconnected and mutually influencing, this work brings insight into the excellence of the use of humic substances as a versatile mediator contributing to the promotion of One Health.
Collapse
Affiliation(s)
- Simona Hriciková
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Ivona Kožárová
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Nikola Hudáková
- Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Anna Reitznerová
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Jozef Nagy
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Slavomír Marcinčák
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| |
Collapse
|
6
|
Humic Acids Preparation, Characterization, and Their Potential Adsorption Capacity for Aflatoxin B 1 in an In Vitro Poultry Digestive Model. Toxins (Basel) 2023; 15:toxins15020083. [PMID: 36828398 PMCID: PMC9962053 DOI: 10.3390/toxins15020083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Vermicompost was used for humic acid (HA) preparation, and the adsorption of aflatoxin B1 (AFB1) was investigated. Two forms of HA were evaluated, natural HA and sodium-free HA (SFHA). As a reference, a non-commercial zeolitic material was employed. The adsorbents were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), energy-dispersive X-ray spectroscopy (EDS), zeta potential (ζ-potential), scanning electron microscopy (SEM), and point of zero charge (pHpzc). The adsorbent capacity of the materials when added to an AFB1-contaminated diet (100 µg AFB1/kg) was evaluated using an in vitro model that simulates the digestive tract of chickens. Characterization results revealed the primary functional groups in HA and SFHA were carboxyl and phenol. Furthermore, adsorbents have a highly negative ζ-potential at the three simulated pH values. Therefore, it appears the main influencing factors for AFB1 adsorption are electrostatic interactions and hydrogen bonding. Moreover, the bioavailability of AFB1 in the intestinal section was dramatically decreased when sorbents were added to the diet (0.2%, w/w). The highest AFB1 adsorption percentages using HA and SFHA were 97.6% and 99.7%, respectively. The zeolitic material had a considerable adsorption (81.5%). From these results, it can be concluded that HA and SFHA from vermicompost could be used as potential adsorbents to remove AFB1 from contaminated feeds.
Collapse
|
7
|
López-García YR, Gómez-Rosales S, Angeles MDL, Jiménez-Severiano H, Merino-Guzman R, Téllez-Isaias G. Effect of the Addition of Humic Substances on Morphometric Analysis and Number of Goblet Cells in the Intestinal Mucosa of Broiler Chickens. Animals (Basel) 2023; 13:ani13020212. [PMID: 36670752 PMCID: PMC9855014 DOI: 10.3390/ani13020212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The mechanisms of action of humic substances (HS) as growth promoters in poultry are unknown. In this study, the productive performance, histology, and number of goblet cells (GC) in the intestinal villi of broilers under steady-state digestive conditions and under abrupt changes in diet with the addition of HS was evaluated. Broilers housed individually were offered three treatments from 14−28 days: 1 = diet with white corn/soybean meal, without growth promoter antibiotics (nonGPA); 2 = with GPA (GPA); and 3 = with 0.3% HS. At day 28, two diets were suddenly introduced: (A) white corn/soybean meal plus dried distillers’ grains with solubles (DDGS); and (B) white/blue corn/soybean meal/DDGS, keeping the three original treatments. Diets A and B were also exchanged on day 37. FCR was lower with GPA and HS compared to nonGPA from 14−38 days (p < 0.05); at day 28, under steady-state digestive conditions, HS had a similar effect to GPA on the histology and GC number in the jejunum villi. The number of GC in the jejunum of HS-fed broilers on days 29 and 38, after diet changes, behaves similarly to that of AGP-fed broilers (p > 0.05). HS appears to strengthen the mucosal protection of the epithelium of the intestine.
Collapse
Affiliation(s)
- Yair Román López-García
- Posgrado en Ciencias de la Producción y de la Salud Animal, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Km 1 carretera a Colón, Queretaro 76280, Mexico
| | - Sergio Gómez-Rosales
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Km 1 carretera a Colón, Queretaro 76280, Mexico
- Correspondence: ; Tel.: +52-44-2362-6725
| | - María de Lourdes Angeles
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Km 1 carretera a Colón, Queretaro 76280, Mexico
| | - Héctor Jiménez-Severiano
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Km 1 carretera a Colón, Queretaro 76280, Mexico
| | - Rubén Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | | |
Collapse
|