1
|
Liu L, Sun S, Li X. Physcion inhibition of CYP2C9, 2D6 and 3A4 in human liver microsomes. PHARMACEUTICAL BIOLOGY 2024; 62:207-213. [PMID: 38353248 PMCID: PMC10868446 DOI: 10.1080/13880209.2024.2314089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
CONTEXT The effect of the active ingredients in traditional Chinese medicines on the activity of cytochrome P450 enzymes (CYP450s) is a critical factor that should be considered in TCM prescriptions. Physcion, the major active ingredient of Rheum spp. (Polygonaceae), possesses wide pharmacological activities. OBJECTIVES The effect of physcion on CYP450 activity was investigated to provide a theoretical basis for use. MATERIALS AND METHODS The experiments were conducted in pooled human liver microsomes (HLMs). The activity of CYP450 isoforms was evaluated with corresponding substrates and probe reactions. Blank HLMs were set as negative controls, and typical inhibitors were employed as positive controls. The inhibition model was fitted with Lineweaver Burk plots. The concentration (0, 2.5, 5, 10, 25, 50 and 100 μM physcion) and time-dependent (0, 5, 10, 15 and 30 min) effects of physcion were also assessed. RESULTS Physcion suppressed CYP2C9, 2D6 and 3A4 in a concentration-dependent manner with IC50 values of 7.44, 17.84 and 13.50 μM, respectively. The inhibition of CYP2C9 and 2D6 was competitive with the Ki values of 3.69 and 8.66 μM, respectively. The inhibition of CYP3A4 was non-competitive with a Ki value of 6.70 μM. Additionally, only the inhibition of CYP3A4 was time-dependent with the KI and Kinact parameters of 3.10 μM-1 and 0.049 min-1, respectively. CONCLUSIONS The inhibition of CYP450s by physcion should be considered in its clinical prescription, and the study design can be employed to evaluate the interaction of CYP450s with other herbs.
Collapse
Affiliation(s)
- Lu Liu
- Department of Endocrine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Sen Sun
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Shanghai, PR China
| | - Xiaohua Li
- Department of Endocrine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
2
|
Sun P, Lootens O, Kabeta T, Reckelbus D, Furman N, Cao X, Zhang S, Antonissen G, Croubels S, De Boevre M, De Saeger S. Exploration of Cytochrome P450-Related Interactions between Aflatoxin B1 and Tiamulin in Broiler Chickens. Toxins (Basel) 2024; 16:160. [PMID: 38535826 PMCID: PMC10974768 DOI: 10.3390/toxins16030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2025] Open
Abstract
Poultry may face simultaneous exposure to aflatoxin B1 (AFB1) and tiamulin (TIA), given mycotoxin contamination and antibiotic use. As both mycotoxins and antibiotics can affect cytochrome P450 enzymes (CYP450), our study aimed to explore their interaction. We developed UHPLC-MS/MS methods for the first-time determination of the interaction between TIA and AFB1 in vitro and in vivo in broiler chickens. The inhibition assay showed the half maximal inhibitory concentration (IC50) values of AFB1 and TIA in chicken liver microsomes are more than 7.6 μM, indicating an extremely weak inhibitory effect on hepatic enzymes. Nevertheless, the oral TIA pharmacokinetic results indicated that AFB1 significantly increased the area under the plasma concentration-time curve (AUClast) of TIA by 167% (p < 0.01). Additionally, the oral AFB1 pharmacokinetics revealed that TIA increased the AUClast and mean residence time (MRT) of AFB1 by 194% (p < 0.01) and 136%, respectively. These results suggested that the observed inhibition may be influenced by other factors, such as transport. Therefore, it is meaningful to further explore transport and other enzymes, involved in the interaction between AFB1 and TIA. Furthermore, additional clinical studies are necessary to thoroughly assess the safety of co-exposure with mycotoxins and antibiotics.
Collapse
Affiliation(s)
- Pan Sun
- Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium; (P.S.); (O.L.); (M.D.B.)
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium; (T.K.); (D.R.); (N.F.); (S.C.)
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.C.); (S.Z.)
| | - Orphélie Lootens
- Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium; (P.S.); (O.L.); (M.D.B.)
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Ghent University, B-9000 Ghent, Belgium
| | - Tadele Kabeta
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium; (T.K.); (D.R.); (N.F.); (S.C.)
- School of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Jimma University, Jimma P.O. Box 307, Oromia, Ethiopia
| | - Diethard Reckelbus
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium; (T.K.); (D.R.); (N.F.); (S.C.)
| | - Natalia Furman
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium; (T.K.); (D.R.); (N.F.); (S.C.)
- Chair Poultry Health Sciences, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium;
| | - Xingyuan Cao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.C.); (S.Z.)
| | - Suxia Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.C.); (S.Z.)
| | - Gunther Antonissen
- Chair Poultry Health Sciences, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium;
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium; (T.K.); (D.R.); (N.F.); (S.C.)
| | - Marthe De Boevre
- Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium; (P.S.); (O.L.); (M.D.B.)
| | - Sarah De Saeger
- Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium; (P.S.); (O.L.); (M.D.B.)
| |
Collapse
|
3
|
Ichinose P, Miró MV, Larsen K, Lifschitz A, Virkel G. Unravelling drug-drug interactions in pigs: Induction of hepatic cytochrome P450 1A (CYP1A) metabolism after the in-feed medication with the anthelmintic fenbendazole. Res Vet Sci 2024; 167:105113. [PMID: 38141570 DOI: 10.1016/j.rvsc.2023.105113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
The anthelmintic fenbendazole (FBZ) undergoes hepatic S‑oxygenation by monooxygenases belonging to the cytochrome P450 (CYP) and flavin-monooxygenase (FMO) families. The in-feed medication with FBZ induced CYP1A-dependent metabolism in pig liver. This fact may alter the metabolism of the anthelmintic itself, and of CYP1A substrates like aflatoxin B1 (AFB1). This work evaluated the effect of the in-feed administration of FBZ on CYP1A-dependent metabolism, on its own pattern of hepatic S‑oxygenation, and on the metabolism of AFB1. Landrace piglets remained untreated (n = 5) or received a pre-mix of FBZ (n = 6) in feed for 9 days. Pigs were slaughtered for preparation of liver microsomes used for: CYP content determination; monitoring the CYP1A-dependent enzyme activities, 7-ethoxyresorufin O-deethylase (EROD) and 7-methoxyresorufin O-demethylase (MROD); measurement of FBZ (50 μM) S‑oxygenation, and AFB1 (16 nM) disappearance from the incubation medium. In microsomes of FBZ-treated animals, EROD and MROD increased 19-fold (p = 0.002) and 14-fold (p = 0.003), respectively. An enhanced (3-fold, p = 0.004) participation of the CYP pathway in FBZ S‑oxygenation was observed in the liver of piglets treated with the anthelmintic (210 ± 69 pmol/min.nmol CYP) compared to untreated animals (68 ± 34 pmol/min.nmol CYP). AFB1 metabolism was 93% higher (p = 0.009) in the liver of FBZ-treated compared to untreated pigs. Positive and significant (p < 0.05) correlations were observed between CYP1A-dependent enzyme activities and FBZ or AFB1 metabolism. The sustained administration of FBZ caused an auto-induction of the CYP1A-dependent S‑oxygenation of this anthelmintic. The CYP1A induction triggered by the anthelmintic could amplify the production of AFB1 metabolites in pig liver, including the hepatotoxic AFB1-derived epoxide.+.
Collapse
Affiliation(s)
- Paula Ichinose
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina
| | - María Victoria Miró
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina
| | - Karen Larsen
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina
| | - Adrián Lifschitz
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina
| | - Guillermo Virkel
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Guo J, Zhang L, Zhao Y, Ihsan A, Wang X, Tao Y. Study on the Metabolic Transformation Rule of Enrofloxacin Combined with Tilmicosin in Laying Hens. Metabolites 2023; 13:metabo13040528. [PMID: 37110187 PMCID: PMC10144589 DOI: 10.3390/metabo13040528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
There is often abuse of drugs in livestock and poultry production, and the improper use of drugs leads to the existence of a low level of residues in eggs, which is a potential threat to human safety. Enrofloxacin (EF) and tilmicosin (TIM) are regularly combined for the prevention and treatment of poultry diseases. The current studies on EF or TIM mainly focus on a single drug, and the effects of the combined application of these two antibiotics on EF metabolism in laying hens are rarely reported. In this study, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the residual EF and TIM in laying hens and to investigate the effect of TIM on the EF metabolism in laying hens. In this paper, we first establish a method that can detect EF and TIM simultaneously. Secondly, the results showed that the highest concentration of EF in the egg samples was 974.92 ± 441.71 μg/kg on the 5th day of treatment. The highest concentration of EF in the egg samples of the combined administration group was 1256.41 ± 226.10 μg/kg on the 5th day of administration. The results showed that when EF and TIM were used in combination, the residue of EF in the eggs was increased, the elimination rate of EF was decreased, and the half-life of EF was increased. Therefore, the use of EF and TIM in combination should be treated with greater care and supervision should be strengthened to avoid risks to human health.
Collapse
Affiliation(s)
- Jingchao Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Liyun Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongxia Zhao
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad 45550, Pakistan;
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Liang Y, Jiang Q, Gong Y, Yu Y, Zou H, Zhao J, Zhang T, Zhang J. In vitro and in silico assessment of endocrine disrupting effects of food contaminants through pregnane X receptor. Food Chem Toxicol 2023; 175:113711. [PMID: 36893891 DOI: 10.1016/j.fct.2023.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
As a promiscuous xenobiotic receptor, pregnane X receptor (PXR) has been confirmed to participate in numerous physiological process. In addition to the conventional estrogen/androgen receptor, PXR also serves as an alternative target for environmental chemical contaminants. In this work, the PXR-mediated endocrine disrupting effects of typical food contaminants were explored. Firstly, the time-resolved fluorescence resonance energy transfer assays confirmed the PXR binding affinities of 2,2',4,4',5,5'-hexachlorobiphenyl, bis(2-ethylhexyl) phthalate, dibutyl phthalate, chlorpyrifos, bisphenol A, and zearalenone, with IC50 values ranging from 1.88 to 4284.00 nM. Then their PXR agonist activities were assessed by PXR-mediated CYP3A4 reporter gene assays. Subsequently, the regulation of gene expressions of PXR and its targets CYP3A4, UGT1A1, and MDR1 by these compounds was further investigated. Intriguingly, all the tested compounds interfered with these gene expressions, confirming their endocrine disrupting effects via PXR-mediated signaling. The compound-PXR-LBD binding interactions were explored by molecular docking and molecular dynamics simulations to unravel the structural basis of their PXR binding capacities. The weak intermolecular interactions are key players in stabilizing these compound-PXR-LBD complexes. During the simulation process, 2,2',4,4',5,5'-hexachlorobiphenyl remained stable while the other 5 compounds underwent relatively severe disturbances. In conclusion, these food contaminants might exhibit endocrine disrupting effects via PXR.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
6
|
Medication with fenbendazole in feed: plasma concentrations and effects on hepatic xenobiotic metabolizing enzymes in swine. Vet Res Commun 2022; 47:803-815. [PMID: 36542192 DOI: 10.1007/s11259-022-10041-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
|