1
|
Vidaković Knežević S, Knežević S, Vranešević J, Milanov D, Ružić Z, Karabasil N, Kocić-Tanackov S. Using Essential Oils to Reduce Yersinia enterocolitica in Minced Meat and in Biofilms. Foods 2024; 13:806. [PMID: 38472919 DOI: 10.3390/foods13050806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Yersiniosis, one of the leading foodborne infections in the European Union, is caused by Yersinia enterocolitica. In this study, the antibacterial and antibiofilm effects of cinnamon (Cinnamomum zeylanicum Nees), clove (Syzygium aromaticum L.), oregano (Origanum vulgare L.), rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and winter savory (Satureja montana L.) essential oils were investigated against Y. enterocolitica strains belonging to the bioserotype 4/O:3. Cinnamon essential oil showed the highest antibacterial activity, with an MIC value 0.09 µL/mL, followed by oregano and thyme essential oils, with MIC values from 0.09 to 0.18 µL/mL, and from 0.18 to 0.23 µL/mL, respectively. Thyme essential oil at 0.23 µL/g (MIC) and at 0.46 µL/g (2MIC) significantly (p < 0.05) reduced the number of Y. enterocolitica by 0.38 log CFU/g and 0.64 log CFU/g, respectively, in minced pork meat during storage at 4 °C for 4 days. The Y. enterocolitica strains formed biofilms at 15 °C and 37 °C in tryptic soy broth and Luria-Bertani broth, while no biofilms were obtained at 5 °C, and in meat broth nutrient media. Applying the minimum bactericidal concentrations of cinnamon, clove, oregano, rosemary, thyme, and winter savory essential oils on preformed biofilms led to significant reductions being observed in the range from 45.34% to 78.89%. A scanning electron microscopy assay showed the devastating impact of oregano and thyme essential oils on the morphology of Y. enterocolitica bacterial cells. In conclusion, the results of this study show that essential oils possess high anti-Yersinia and antibiofilm effects.
Collapse
Affiliation(s)
| | | | | | - Dubravka Milanov
- Scientific Veterinary Institute "Novi Sad", 21000 Novi Sad, Serbia
| | - Zoran Ružić
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nedjeljko Karabasil
- Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | |
Collapse
|
2
|
Angelovska M, Zaharieva MM, Dimitrova LL, Dimova T, Gotova I, Urshev Z, Ilieva Y, Kaleva MD, Kim TC, Naydenska S, Dimitrov Z, Najdenski H. Prevalence, Genetic Homogeneity, and Antibiotic Resistance of Pathogenic Yersinia enterocolitica Strains Isolated from Slaughtered Pigs in Bulgaria. Antibiotics (Basel) 2023; 12:antibiotics12040716. [PMID: 37107078 PMCID: PMC10134977 DOI: 10.3390/antibiotics12040716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Yersiniosis is the third most commonly reported foodborne zoonosis in the European Union. Here, we evaluated the prevalence of pathogenic Yersinia enterocolitica among healthy pigs (as a major reservoir) in a slaughterhouse in Bulgaria. A total of 790 tonsils and feces from 601 pigs were examined. Isolation and pathogenicity characterization was carried out by the ISO 10273:2003 protocol and Polymerase Chain Reaction (PCR), detecting the 16S rRNA gene, attachment and invasion locus (ail), Yersinia heat-stable enterotoxin (ystA), and Yersinia adhesion (yadA) genes. Genetic diversity was assessed by pulsed-field gel electrophoresis (PFGE), and antimicrobial resistance by the standard disk diffusion method. Of all the pigs tested, 6.7% were positive for Y. enterocolitica. All isolates belonged to Y. enterocolitica bioserotype 4/O:3. ail, and ystA genes were detected in all positive strains (n = 43), while the plasmid Yersinia virulence plasmid (pYV) was detected in 41. High homogeneity was observed among the strains, with all strains susceptible to ceftriaxone, amikacin and ciprofloxacin, and resistant to ampicillin. In conclusion, a low prevalence of Y. enterocolitica 4/O:3 was found in healthy pigs slaughtered in Bulgaria, not underestimating possible contamination of pork as a potential risk to consumer health.
Collapse
Affiliation(s)
- Maya Angelovska
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Maya Margaritova Zaharieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Lyudmila L Dimitrova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Irina Gotova
- LB Bulgaricum Plc., R&D Department, 14 Malashevska Str., 1000 Sofia, Bulgaria
| | - Zoltan Urshev
- LB Bulgaricum Plc., R&D Department, 14 Malashevska Str., 1000 Sofia, Bulgaria
| | - Yana Ilieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Mila Dobromirova Kaleva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Tanya Chan Kim
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Sevda Naydenska
- University Multiprofile Hospital for Active Treatment, Alexandrovska, Medical University, 1 Georgi Sofiski Str., 1431 Sofia, Bulgaria
| | - Zhechko Dimitrov
- LB Bulgaricum Plc., R&D Department, 14 Malashevska Str., 1000 Sofia, Bulgaria
| | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria
| |
Collapse
|