1
|
Blackburn BT, Alba RAC, Porokhin VO, Cai R, Hatch A, Hassoun S, Ajo‐Franklin CM, Mevers E. Identifying Key Properties That Drive Redox Mediator Activity in Lactiplantibacillus Plantarum. Angew Chem Int Ed Engl 2025; 64:e202424867. [PMID: 40019351 PMCID: PMC12051747 DOI: 10.1002/anie.202424867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Lactiplantibacillus plantarum is known to utilize exogenous small molecule quinone mediators to perform extracellular electron transfer (EET), allowing it to produce a detectable current in a bioelectrochemical system (BES). Utilization of quinone mediators by L. plantarum requires a type-II NADH dehydrogenase (Ndh2); however, structural variations in the core of 1,4-naphthoquinone EET mediators have shown to yield significantly different current outputs. Herein, we assembled a library of 40 quinone-based EET mediators to probe the important physicochemical properties and biochemical interactions responsible for Ndh2-dependent EET in L. plantarum. The library was designed with inspiration from naturally occurring metabolites, and assembly was focused on structural modifications that diversified polarity, reduction potential, and predicted free energy of binding to Ndh2 (ΔGcomp), as these properties are hypothesized to drive EET activity. In general, Ndh2-dependent EET activity in an iron(III) nanoparticle reduction assay significantly correlates to the mediator's polarity and ΔGcomp. Five mediators were analyzed in BESs with L. plantarum, and each generated Ndh2-dependent current over background signal. Importantly, an amine-containing mediator yielded incredibly stable current output over the course of the experiment (up to 5 days). These findings improve our understanding of structure-activity relationships for quinone-mediated EET and provide stable mediators for bioelectronic sensing applications.
Collapse
Affiliation(s)
| | - Robyn A. C. Alba
- Departments of BioScience and ChemicalBiomolecular EngineeringRice UniversityHoustonTexasUSA
| | | | - Rong Cai
- Departments of BioScience and ChemicalBiomolecular EngineeringRice UniversityHoustonTexasUSA
| | - Arden Hatch
- Department of ChemistryVirginia TechBlacksburgVirginiaUSA
| | - Soha Hassoun
- Department of Computer ScienceTufts UniversityMedfordMassachusettsUSA
| | | | - Emily Mevers
- Department of ChemistryVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
2
|
Al-Otaibi JS, Mary YS, Mary YS, Krátký M, Vinsova J, Mahmood T, Gamberini MC, Rajendran Nair DS. TD-DFT, DFT, docking, MD simulations, and concentration-dependent SERS investigations of a bioactive trifluoromethyl derivative having human acetylcholinesterase and butyrylcholinesterase in silver colloids. J Mol Model 2023; 29:271. [PMID: 37535185 DOI: 10.1007/s00894-023-05679-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
CONTEXT Various concentrations of (E)-4-methoxy-N'-(2-(trifluoromethyl)benzylidene) benzohydrazide (EMT) adsorbed on colloidal silver nanoparticles were studied using SERS and results were compared to the normal Raman spectrum. DFT calculations were used to validate experimental findings. Theoretically, the structures of the EMT and EMT-Ag6 systems were optimized. The UV-Vis spectral analysis's red shift and lower intensity behavior show that EMT has chemisorbed onto Ag nanoparticles. Charge transfer (CT) from Ag to EMT is highlighted by FMO analysis. The CT interaction in EMT and EMT-Ag6 was further verified by MEP and Mulliken charge analyses. The EMT was adsorbed on Ag nanoparticles with tilted orientation and orientation changes with colloidal concentration, according to SERS spectrum analysis. Docking EMT with 4PQE and 5DYW binding affinities are found to be -9.7 and -8.1 kcal/mol. MD simulations give the competence of 5DYW-EMT and 4PQE-EMT in their intended binding interactions and their ability to establish enduring associations with the protein of interest. METHODS DFT was used to optimize the molecular structures of EMT and EMT-Ag6 using B3LYP/6-311++G* (LANL2DZ basis set for Ag). A molecular dynamics simulation study was conducted on the 4PQE-EMT and 5DYW-EMT systems using the Desmond software for 100 ns.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Y Sheena Mary
- Department of Physics, FMNC, University of Kerala, Kollam, Kerala, India.
- Thushara, Neethinagar, Kollam, Kerala, India.
| | | | - Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jarmila Vinsova
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Tariq Mahmood
- Department of Chemistry, College of Science, University of Bahrain, Manama, Bahrain
| | - Maria Cristina Gamberini
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Deepthi S Rajendran Nair
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
3
|
Al-Otaibi JS, Mary YS, Mary YS, Krátký M, Vinsova J, Gawad J, Gamberini MC. SERS spectra of a bioactive carboximidamide derivative at different concentrations: Experimental and DFT investigations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Concentration dependent SERS study of a bioactive methylsulfonyl derivative. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
J. AHM, R. P, R. S, A. L, K. L. Structural, Quantum Chemical, Molecular Docking, and Dynamics Studies of Quercetin—A Potent Inhibitor for Colon Cancer. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2149574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
| | - Premkumar R.
- PG and Research Department of Physics, N.M.S.S.V.N. College, Madurai, India
| | - Sangeetha R.
- Department of Physics, Mannar Thirumalai Naicker College, Madurai, India
| | - Lakshmi A.
- Department of Physics, Mannar Thirumalai Naicker College, Madurai, India
| | - Langeswaran K.
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, India
| |
Collapse
|
6
|
Premkumar R, Hussain S, Jayram ND, Koyambo-Konzapa SJ, Revathy M, Mathavan T, Milton Franklin Benial A. Adsorption and orientation characteristics of 1-methylpyrrole-2-carbonyl chloride using SERS and DFT investigations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
SERS and DFT investigations of methyl 4‑bromo-1H-pyrrole-2-carboxylate adsorbed on silver and gold substrates: In perspective of biosensor applications. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Patel DG, Mitchell TB, Myers SD, Carter DA, Novak FA. A Suzuki Approach to Quinone-Based Diarylethene Photochromes. J Org Chem 2020; 85:2646-2653. [PMID: 31896258 DOI: 10.1021/acs.joc.9b02632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diarylethene photochromes show promise for use in advanced organic electronic and photonic materials with burgeoning considerations for biological applications; however, these compounds typically require UV light for photoswitching in at least one direction, thus limiting their appeal. We here introduce a naphthoquinone-based diarylethene that switches between open and closed forms with visible light. The synthesis of this quinone diarylethene relies on Suzuki methodology, allowing for the inclusion of functional groups not otherwise accessible with current synthetic routes.
Collapse
Affiliation(s)
- Dinesh G Patel
- Department of Chemistry , The Pennsylvania State University at Hazleton , Hazleton , Pennsylvania 18202 , United States
| | - Travis B Mitchell
- Department of Chemistry , The State University of New York at Buffalo , Buffalo , New York 14260-3000 , United States
| | - Shea D Myers
- Department of Chemistry , The Pennsylvania State University at Hazleton , Hazleton , Pennsylvania 18202 , United States
| | - Dorothy A Carter
- Department of Chemistry , The Pennsylvania State University at Hazleton , Hazleton , Pennsylvania 18202 , United States
| | - Frank A Novak
- Department of Chemistry , The Pennsylvania State University at Hazleton , Hazleton , Pennsylvania 18202 , United States
| |
Collapse
|
9
|
Shu C, Shi CY, Sun Q, Zhou B, Li TY, He Q, Lu X, Liu RS, Ye LW. Generation of Endocyclic Vinyl Carbene Complexes via Gold-Catalyzed Oxidative Cyclization of Terminal Diynes: Toward Naphthoquinones and Carbazolequinones. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04455] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chao Shu
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chong-Yang Shi
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qing Sun
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bo Zhou
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tian-You Li
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiao He
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Lu
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rai-Shung Liu
- Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Long-Wu Ye
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Suárez-Rozas C, Simpson S, Fuentes-Retamal S, Catalán M, Ferreira J, Theoduloz C, Mella J, Cabezas D, Cassels BK, Yáñez C, Castro-Castillo V. Antiproliferative and proapoptotic activities of aza-annulated naphthoquinone analogs. Toxicol In Vitro 2018; 54:375-390. [PMID: 30389605 DOI: 10.1016/j.tiv.2018.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
1,4-Naphthoquinone derivatives have been widely documented with regard to their biological properties, and particularly their anticancer activities. In the 9,10-anthraquinone family, aza-annulation involving one of the carbonyl oxygen atoms has afforded more potent, possibly less toxic analogues. We recently carried out different modifications on the naphthoquinone skeleton to generate 3-chloro-2-amino- and 3-chloro-2-(N-acetamido)-1,4-naphthoquinone and 3,4-dihydrobenzo[f]quinoxalin-6(2H)-one derivatives. These three series of compounds were now tested against normal human fibroblasts and six human cancer cell lines. Some of the dihydrobenzoquinoxalinone derivatives were not only more potent than their 1,4-naphthoquinone counterparts, but also exhibited 10- to 14-fold selectivity between bladder carcinoma and normal cells and were equipotent with the non-selective reference drug used (etoposide). The fusion of an additional azaheterocycle to the 1,4-naphthoquinone nucleus modulates both the activity, selectivity and mechanism of action of the compounds. The electrochemical properties of selected compounds were evaluated in an attempt to correlate them with cytotoxic activity and mechanism of action. Finally, 3D-QSAR CoMFA and CoMSIA models were built on the AGS, J82, and HL-60 cell lines. The best models had values of r2pred = 0.815; 0.823 and 0.925. The main structural relationships found, suggest that acetylation and alkylation of the amino group with large groups would be beneficial for cytotoxic activity.
Collapse
Affiliation(s)
- Cristian Suárez-Rozas
- Department of Chemistry, Faculty of Sciences, University of Chile, Las Palmeras 3425, 780003 Ñuñoa, Santiago, Chile
| | - Sebastián Simpson
- Department of Chemistry, Faculty of Basic Sciences, Metropolitan Educational Sciences University, Av. José Pedro Alessandri 774, 7760197 Ñuñoa, Santiago, Chile
| | - Sebastián Fuentes-Retamal
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Mabel Catalán
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Jorge Ferreira
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Cristina Theoduloz
- Cell Culture Laboratory, Faculty of Health Sciences, University of Talca, 824000, Av. Lircay, Talca, Chile
| | - Jaime Mella
- Institute of Chemistry and Biochemistry, Faculty of Sciences, University of Valparaiso, 2360102, Av. Gran Bretaña 1111, Playa Ancha, Valparaiso, Casilla 5030, Chile; Centro de Investigación Farmacopea Chilena (CIFAR), University of Valparaíso, 2360134, Santa Marta 183, Valparaíso, Chile
| | - David Cabezas
- Institute of Chemistry and Biochemistry, Faculty of Sciences, University of Valparaiso, 2360102, Av. Gran Bretaña 1111, Playa Ancha, Valparaiso, Casilla 5030, Chile; Centro de Investigación Farmacopea Chilena (CIFAR), University of Valparaíso, 2360134, Santa Marta 183, Valparaíso, Chile
| | - Bruce K Cassels
- Department of Chemistry, Faculty of Sciences, University of Chile, Las Palmeras 3425, 780003 Ñuñoa, Santiago, Chile
| | - Claudia Yáñez
- Department of Organic Chemistry and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, 8330015 Santiago, Chile
| | - Vicente Castro-Castillo
- Department of Organic Chemistry and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, 8330015 Santiago, Chile.
| |
Collapse
|
11
|
Duraipandy N, Lakra R, Korrapati PS, Sudhakaran PR, Kiran MS. Targeting Pyruvate Kinase M2, β Catenin Signaling by Juglone Silver Nano Framework for Selective Cancer Cell Death. ChemistrySelect 2018. [DOI: 10.1002/slct.201800152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- N. Duraipandy
- Biological Materials Laboratory; CSIR-Central Leather Research Institute; Adyar Chennai-20
- Academy of Scientific and Innovative Research; CSIR-CLRI; Chennai-20
| | - Rachita Lakra
- Biological Materials Laboratory; CSIR-Central Leather Research Institute; Adyar Chennai-20
| | - Purna Sai Korrapati
- Biological Materials Laboratory; CSIR-Central Leather Research Institute; Adyar Chennai-20
- Academy of Scientific and Innovative Research; CSIR-CLRI; Chennai-20
| | - Perumana R. Sudhakaran
- Department of Computational Biology and Bioinformatics; University of Kerala, Kariavattom, Thiruvananthapuram; Kerala India 695581
| | - Manikantan Syamala Kiran
- Biological Materials Laboratory; CSIR-Central Leather Research Institute; Adyar Chennai-20
- Academy of Scientific and Innovative Research; CSIR-CLRI; Chennai-20
| |
Collapse
|
12
|
Parameswari A, Mohamed Asath R, Premkumar R, Milton Franklin Benial A. SERS and quantum chemical studies on N -methylglycine molecule on silver nanoparticles. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
|
14
|
Parameswari A, Premkumar S, Premkumar R, Milton Franklin Benial A. Surface enhanced Raman spectroscopy and quantum chemical studies on glycine single crystal. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Nadji-Boukrouche AR, On S, Khoumeri O, Terme T, Vanelle P. Original synthesis of benzo[f]indole-4,9-dione derivatives using TDAE strategy. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Geetha K, Umadevi M, Sathe GV, Vanelle P, Terme T, Khoumeri O. Surface Enhanced Raman Spectroscopic investigations of 2-bromo-3-methylamino-1,4-naphthoquinone on silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 136 Pt C:1967-1973. [PMID: 25468439 DOI: 10.1016/j.saa.2014.10.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/04/2014] [Accepted: 10/27/2014] [Indexed: 06/04/2023]
Abstract
Surface Enhanced Raman Spectroscopic technique has been employed to investigate the orientation of 2-bromo-3-methylamino-1,4-naphthoquinone (BMANQ) on silver nanoparticles. Silver nanoparticles have been prepared by solution combustion method with citric acid as fuel. Silver nanoparticles were characterized by X-ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and Scanning Electron Microscopy (SEM). XRD and morphological results confirmed the nanocrystalline nature of the prepared silver nanoparticles. The observed intense CO stretching, CBr stretching and NH2 vibration suggests that the BMANQ molecule may be adsorbed in a 'stand-on' orientation to the silver surface. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy show that charge transfer occurs within the molecule.
Collapse
Affiliation(s)
- K Geetha
- Department of Physics, Mother Teresa Women's University, Kodaikanal 624101, India
| | - M Umadevi
- Department of Physics, Mother Teresa Women's University, Kodaikanal 624101, India.
| | - G V Sathe
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017, India
| | - P Vanelle
- Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - T Terme
- Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - O Khoumeri
- Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| |
Collapse
|
17
|
|
18
|
Cho EM, Singh DK, Ganbold EO, Dembereldorj U, Jang SW, Kim D, Choo J, Kim S, Lee CM, Yang SI, Joo SW. Interactions between the antifungal drug myclobutanil and gold and silver nanoparticles in Penicillium digitatum investigated by surface-enhanced Raman scattering. APPLIED SPECTROSCOPY 2014; 68:307-314. [PMID: 24666947 DOI: 10.1366/13-07084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Surface-enhanced Raman scattering (SERS) of an antifungal reagent, myclobutanil (MCB), was performed on Au and Ag nanoparticles (NPs) to estimate the drug-release behaviors in fungal cells. A density functional theory (DFT) calculation was introduced to predict a favorable binding site of MCB to either the Ag or Au atom. Myclobutanil was presumed to bind more strongly to Au than to Ag in their most stable, optimized geometries of the N4 atom in its 1,2,4-triazole unit binding to the metal atom. Strong intensities were observed in the Ag SERS spectra only at acidic pH values, whereas the most prominent peaks in the Au SERS spectra of MCB matched quite well with those of 1,2,4-triazole regardless of pH conditions. The Raman spectral intensities of the MCB-assembled Ag and Au NPs decreased after treatment with either potato dextrose agar (PDA) or glutathione (GSH). Darkfield microscopy and confocal SERS were performed to analyze the MCB-assembled metal NPs inside Penicillium digitatum fungal cells. The results suggested that MCB was released from the metal NPs in the intracellular GSH in the fungi because we observed only fungal cell peaks.
Collapse
Affiliation(s)
- Eun-Min Cho
- Kyung Hee University, College of Environment and Applied Chemistry, Yongin 446-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|