1
|
Falanga AP, D'Urso A, Travagliante G, Gangemi CMA, Marzano M, D'Errico S, Terracciano M, Greco F, De Stefano L, Dardano P, Rea I, Piccialli G, Oliviero G, Borbone N. Higher-order G-quadruplex structures and porphyrin ligands: Towards a non-ambiguous relationship. Int J Biol Macromol 2024; 268:131801. [PMID: 38670185 DOI: 10.1016/j.ijbiomac.2024.131801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Herein, we evaluated the interaction of the tetracationic porphyrin H2TCPPSpm4 with three distinct DNA G-quadruplex (G4) models, i.e., the tetramolecular G4 d(TGGGGT)4 (Q1), the 5'-5' stacked G4-dimer [d(CGGAGGT)4]2 (Q2), and a mixture of 5'-5' stacked G-wires [d(5'-CGGT-3'-3'-GGC-5')4]n (Qn). The combined data obtained from UV-Vis, CD, fluorescence, PAGE, RLS, AFM, NMR, and HPLC-SEC experiments allowed us to shed light on the binding mode of H2TCPPSpm4 with the three G4 models differing for the type and the number of available G4 ending faces, the length of the G4 units, and the number of stacked G4 building blocks. Specifically, we found that H2TCPPSpm4 interacted with the shortest Q1 as an end-stacking ligand, whereas the groove binding mode was ascertained in the case of the Q2 and Qn G4 models. In the case of the interaction with Q1 and Qn, we found that H2TCPPSpm4 induces the formation of supramolecular aggregates at porphyrin/G4 ratios higher than 2:1, whereas no significant aggregation was observed for the interaction with Q2 up to the 5:1 ratio. These results unambiguously demonstrated the suitability of porphyrins for the development of specific G4 ligands or G4-targeting diagnostic probes, being H2TCPPSpm4 capable to distinguish between different G4s.
Collapse
Affiliation(s)
- Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Alessandro D'Urso
- Department of Chemical Sciences, University of Catania, viale Andrea Doria 6, 95125 Catania, Italy
| | - Gabriele Travagliante
- Department of Chemical Sciences, University of Catania, viale Andrea Doria 6, 95125 Catania, Italy
| | | | - Maria Marzano
- CESTEV, University of Naples Federico II, via Tommaso De Amicis 95, 80145 Naples, Italy
| | - Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, via Pietro Castellino 111, 80131 Naples, Italy
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, via Pietro Castellino 111, 80131 Naples, Italy
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, via Pietro Castellino 111, 80131 Naples, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
2
|
Singh M, Gupta R, Comez L, Paciaroni A, Rani R, Kumar V. BCL2 G quadruplex-binding small molecules: Current status and prospects for the development of next-generation anticancer therapeutics. Drug Discov Today 2022; 27:2551-2561. [PMID: 35709931 DOI: 10.1016/j.drudis.2022.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
B cell lymphoma 2 (BCL2) overexpression in a range of human tumors is often related to chemotherapy resistance and poor prognosis. GC-rich regions upstream of the P1 promoter in human BCL2 can form G-quadruplex (G4) structures through the stacking of four Hoogsteen-paired guanine bases. Stabilizing the G4 fold implies the inhibition of BCL2 expression and, thus, small molecules that selectively bind to the G4 are promising anticancer candidates. In this review, we discuss the structural aspects, binding affinity, selectivity, and biological activity of well-characterized BCL2 G4 binding ligands in vitro and in vivo. We also explore future directions in the research and development of G4-based anticancer therapeutics.
Collapse
Affiliation(s)
- Mamta Singh
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, UP, 201303, India
| | - Rajat Gupta
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, UP, 201303, India
| | - Lucia Comez
- IOM-CNR National Research Council, Via Pascoli, Perugia I-06123, Italy
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, via Pascoli, 06123, Italy
| | - Reshma Rani
- Drug Discovery Unit, Jubilant Biosys Ltd, Sector 58, Noida, UP 201301, India.
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, UP, 201303, India.
| |
Collapse
|
3
|
Stanojević A, Milovanović B, Stanković I, Etinski M, Petković M. The significance of the metal cation in guanine-quartet – metalloporphyrin complexes. Phys Chem Chem Phys 2021; 23:574-584. [DOI: 10.1039/d0cp05798c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The distinct positions of the divalent metal ions with respect to the porphyrin ring are responsible for different interaction energies between metalloporphyrins and the guanine quartet.
Collapse
Affiliation(s)
- Ana Stanojević
- University of Belgrade – Faculty of Physical Chemistry
- 11 158 Belgrade
- Serbia
| | | | - Ivana Stanković
- Institute of Chemistry
- Technology and Metallurgy
- 11 000 Belgrade
- Serbia
| | - Mihajlo Etinski
- University of Belgrade – Faculty of Physical Chemistry
- 11 158 Belgrade
- Serbia
| | - Milena Petković
- University of Belgrade – Faculty of Physical Chemistry
- 11 158 Belgrade
- Serbia
| |
Collapse
|
4
|
Caporaletti F, Rubio-Magnieto J, Lo M, Longevial JF, Rose C, Clément S, van der Lee A, Surin M, Richeter S. Design of metalloporphyrins fused to imidazolium rings for binding DNA G-quadruplexes. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Synthesis and characterization of nickel(II) meso-tetraarylporphyrins fused to imidazolium rings across [Formula: see text],[Formula: see text]-pyrrolic positions and X-ray structure of the porphyrin where two opposed pyrrole units are fused to an imidazolium ring are presented. The interactions between these mono-, bis-, tris- and tetrakis(imidazolium) porphyrins with human telomeric DNA G-quadruplexes (G4) were investigated using UV-vis absorption spectroscopy, Circular Dichroism (CD) spectroscopy and Fluorescence Resonance Energy Transfer (FRET) melting assay. Possible binding modes between cationic porphyrins and a selected G4 sequence (d[AG3(T2AG[Formula: see text]]), and relative stabilities of porphyrin/G4 complexes are discussed. Excepting porphyrins fused to one imidazolium ring, the other derivatives interact with G4 structures and their stabilization strongly depends on the porphyrin structure (number and localization of the imidazolium rings).
Collapse
Affiliation(s)
- Francesca Caporaletti
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS, Place du Parc 20, 7000 Mons, Belgium
| | - Jenifer Rubio-Magnieto
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS, Place du Parc 20, 7000 Mons, Belgium
| | - Mamadou Lo
- Institut Charles Gerhardt Montpellier, ICGM, UMR 5253, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Jean-François Longevial
- Institut Charles Gerhardt Montpellier, ICGM, UMR 5253, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Clémence Rose
- Institut Charles Gerhardt Montpellier, ICGM, UMR 5253, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Sébastien Clément
- Institut Charles Gerhardt Montpellier, ICGM, UMR 5253, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Arie van der Lee
- Institut Européen des Membranes, IEM, UMR 5635, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS, Place du Parc 20, 7000 Mons, Belgium
| | - Sébastien Richeter
- Institut Charles Gerhardt Montpellier, ICGM, UMR 5253, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
5
|
Rubio‐Magnieto J, Kajouj S, Di Meo F, Fossépré M, Trouillas P, Norman P, Linares M, Moucheron C, Surin M. Binding Modes and Selectivity of Ruthenium Complexes to Human Telomeric DNA G‐Quadruplexes. Chemistry 2018; 24:15577-15588. [DOI: 10.1002/chem.201802147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/12/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Jenifer Rubio‐Magnieto
- Laboratory for Chemistry of Novel Materials Center for Innovation in Materials and Polymers University of Mons-UMONS 20 Place du Parc 7000 Mons Belgium
- Current address: Bioinspired Supramolecular Chemistry and Materials group Departament de Química Inorgànica i Orgànica Universitat Jaume I Avda Sos Baynat s/n E-12071 Castelló Spain
| | - Sofia Kajouj
- Chimie Organique et Photochimie CP160/08 Université libre de Bruxelles 50 avenue F. D. Roosevelt 1050 Bruxelles Belgium
| | - Florent Di Meo
- INSERM U1248 IPPRITT University of Limoges School of Pharmacy 2 rue du Dr. Marcland 87025 Limoges France
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials Center for Innovation in Materials and Polymers University of Mons-UMONS 20 Place du Parc 7000 Mons Belgium
| | - Patrick Trouillas
- INSERM U1248 IPPRITT University of Limoges School of Pharmacy 2 rue du Dr. Marcland 87025 Limoges France
- RCPTM Palacký University Faculty of Sciences Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology SE-106 91 Stockholm Sweden
| | - Mathieu Linares
- Department of Theoretical Chemistry and Biology School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology SE-106 91 Stockholm Sweden
- Swedish e-Science Research Centre (SeRC) KTH Royal Institute of Technology 104 50 Stockholm Sweden
| | - Cécile Moucheron
- Chimie Organique et Photochimie CP160/08 Université libre de Bruxelles 50 avenue F. D. Roosevelt 1050 Bruxelles Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials Center for Innovation in Materials and Polymers University of Mons-UMONS 20 Place du Parc 7000 Mons Belgium
| |
Collapse
|
6
|
Yao X, Song D, Qin T, Yang C, Yu Z, Li X, Liu K, Su H. Interaction between G-Quadruplex and Zinc Cationic Porphyrin: The Role of the Axial Water. Sci Rep 2017; 7:10951. [PMID: 28887497 PMCID: PMC5591184 DOI: 10.1038/s41598-017-11413-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/23/2017] [Indexed: 01/27/2023] Open
Abstract
The interaction of ligands with G-quadruplexes has attracted considerable attention due to its importance in molecular recognition and anticancer drugs design. Here, we utilize triplet excited state as a sensitive reporter to study the binding interaction of zinc cationic porphyrin (ZnTMPyP4) with three G-quadruplexes, AG3(T2AG3)3, (G4T4G4)2, and (TG4T)4. By monitoring the triplet decay dynamics of ZnTMPyP4 with transient absorption spectroscopy, the coexisted binding modes via π-π stacking of porphyrin macrocycle and the G-quartets are allowed to be identified quantitatively, which involve intercalation (25% and 36%) versus end-stacking (75% and 64%) for AG3(T2AG3)3 and (G4T4G4)2, and end-stacking (23%) versus partial intercalation (77%) for (TG4T)4. It is shown that the steric hindrance of the axial water decreases greatly the percentage of intercalation. Further, a rapid assessment of binding stoichiometry is fulfilled by measuring the triplet decay dynamics under various [G-quadruplex]/[ZnTMPyP4] ratios. The binding stoichiometric ratios of G-quadruplex/ZnTMPyP4 are 1:2 for AG3(T2AG3)3, 1:1 for (G4T4G4)2, and 1:2 for (TG4T)4, which agree well with results obtained by the conventional method of continuous variation analysis. These results reveal a clear scenario of G-quadruplex/ZnTMPyP4 interaction and provide mechanistic insights for the application of anticancer drug designs using G-quadruplex as target.
Collapse
Affiliation(s)
- Xiangzi Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tingxiao Qin
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunfan Yang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ze Yu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaohong Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Kunhui Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Hongmei Su
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
G-Quadruplex surveillance in BCL-2 gene: a promising therapeutic intervention in cancer treatment. Drug Discov Today 2017; 22:1165-1186. [PMID: 28506718 DOI: 10.1016/j.drudis.2017.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/20/2017] [Accepted: 05/05/2017] [Indexed: 02/07/2023]
Abstract
Recently, therapeutic implications of BCL-2 quadruplex invigorated the field of clinical oncology. This Keynote review discusses how a BCL-2 quadruplex-selective approach circumvents the limitations of existing therapeutics; and which improvisations might ameliorate the recent trends of quadruplex-based treatment.
Collapse
|
8
|
Tolstykh G, Sizov V, Kudrev A. Surface complex of ZnTMPyP4 metalloporphyrin with double-stranded Poly(A)-Poly(U). J Inorg Biochem 2016; 161:83-90. [PMID: 27216450 DOI: 10.1016/j.jinorgbio.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/14/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
This communication presents synthesis and spectral characterization of metalloporphyrin [Zn(X)TMPyP4] (TMPyP4 is 5,10,15,20-tetrakis (N-methylpyridinium-4-yl)porphyrin), and studies its binding onto anionic surface sites of synthetic double stranded polynucleotide Poly(A)-Poly(U). [Zn(X)TMPyP4] binding with Poly(A)-Poly(U) was monitored by UV-Vis absorbance spectroscopy, two fluorescence spectroscopies and 1H NMR in a working aqueous medium of 0.15M ionic strength, pH7.0 and at 25°C. The evidence provided by spectroscopic measurements and multivariate data analysis suggests the use of this metalloporphyrin as a probe for investigation of the polynucleotide surface. In contrast to TMPyP4 intercalation, an outside adsorption of [Zn(X)TMPyP4] induces an attenuation of luminescence intensity and has little influence on the shape of luminescence band. Special attention was paid to the quantitative description of the interaction between neighboring ligands on the Poly(A)-Poly(U) surface. The intrinsic binding constant to an isolated binding site lgKin 5.8±0.1, the cooperativity parameter ω 1.8±0.2, and number of monomers occupied by a ligand n=2 (25°C; pH7.0) were calculated based upon the recently proposed non-linear least-squares fitting procedure. The discovered cooperativity of binding of [Zn(X)TMPyP4] metalloporphyrin to Poly(A)-Poly(U) is significantly lower as compared to free porphyrin TMPyP4, reflecting minimal mutual influence between the nearest neighboring ligands bound with functional PO4(-) groups of the polynucleotide surface.
Collapse
Affiliation(s)
- G Tolstykh
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - V Sizov
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - A Kudrev
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.
| |
Collapse
|
9
|
Synthesis, G-quadruplexes DNA binding, and photocytotoxicity of novel cationic expanded porphyrins. Bioorg Chem 2015; 60:110-7. [DOI: 10.1016/j.bioorg.2015.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 11/23/2022]
|
10
|
Rubio-Magnieto J, Di Meo F, Lo M, Delcourt C, Clément S, Norman P, Richeter S, Linares M, Surin M. Binding modes of a core-extended metalloporphyrin to human telomeric DNA G-quadruplexes. Org Biomol Chem 2015; 13:2453-63. [DOI: 10.1039/c4ob02097a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel π-extended NiII-porphyrin shows a high selectivity towards human telomeric G-quadruplexes.
Collapse
Affiliation(s)
- Jenifer Rubio-Magnieto
- Laboratory for Chemistry of Novel Materials
- Center for Innovation in Materials and Polymers
- University of Mons – UMONS
- B-7000 Mons
- Belgium
| | - Florent Di Meo
- Department of Physics
- Chemistry and Biology (IFM) Linköping University
- SE-581 83 Linköping
- Sweden
| | - Mamadou Lo
- Institut Charles Gerhardt – UMR 5253
- Université de Montpellier 2 – CC1701
- F-34095 Montpellier Cedex 05
- France
| | - Cécile Delcourt
- Laboratory for Chemistry of Novel Materials
- Center for Innovation in Materials and Polymers
- University of Mons – UMONS
- B-7000 Mons
- Belgium
| | - Sébastien Clément
- Institut Charles Gerhardt – UMR 5253
- Université de Montpellier 2 – CC1701
- F-34095 Montpellier Cedex 05
- France
| | - Patrick Norman
- Department of Physics
- Chemistry and Biology (IFM) Linköping University
- SE-581 83 Linköping
- Sweden
| | - Sébastien Richeter
- Institut Charles Gerhardt – UMR 5253
- Université de Montpellier 2 – CC1701
- F-34095 Montpellier Cedex 05
- France
| | - Mathieu Linares
- Laboratory for Chemistry of Novel Materials
- Center for Innovation in Materials and Polymers
- University of Mons – UMONS
- B-7000 Mons
- Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials
- Center for Innovation in Materials and Polymers
- University of Mons – UMONS
- B-7000 Mons
- Belgium
| |
Collapse
|