1
|
Zehra S, Khan HY, Roisnel T, Tabassum S, Arjmand F. Structural insights into interactions of new polymeric (μ-oxo) bridged Cu(II) complexes of taurine with yeast tRNA by spectroscopic and computational approaches and its application towards chemoresistant cancer lines. Int J Biol Macromol 2023; 240:124429. [PMID: 37062375 DOI: 10.1016/j.ijbiomac.2023.124429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023]
Abstract
RNA-targeted drugs are considered as safe treatment option for the cure of many chronic diseases preventing off-targeted delivery and acute toxic manifestations. FDA has approved many such RNA therapies in different phases of clinical trials, validating their use for the treatment of various chronic diseases. We report herein, new water-soluble (μ-oxo) bridged polymeric Cu(II) complexes of taurine (2-aminoethane sulfonic acid) complexes 1 and 2. The therapeutic potency of 1 and 2 was ascertained by studying biophysical interactions with tRNA/ct-DNA. The experimental results demonstrated that the complexes interacted avidly to nucleic acids through intercalation mode depicting a specific preference for tRNA in comparison to ct-DNA and, moreover 2 showed higher binding propensity than 1. The electrophoretic behaviour of the complexes with plasmid pBR322 DNA and tRNA were examined by gel mobility assay that revealed a concentration-dependent activity with complex 2 performing more efficient cleavage as compared to complex 1. Cytotoxicity results on cancer cell strains displayed higher cytotoxicity than complex 1 against treated cancer cells. The synthesized copper(II) taurine complexes have met the basic criteria of anticancer drug design as they are structurally well-characterized, exhibiting good solubility in water, lipophilic in nature with superior intercalating propensity towards tRNA and cytotoxic in nature.
Collapse
Affiliation(s)
- Siffeen Zehra
- Department of Chemistry Aligarh Muslim University, Aligarh, U.P. 202002, India
| | - Huzaifa Yasir Khan
- Department of Chemistry Aligarh Muslim University, Aligarh, U.P. 202002, India
| | - Thierry Roisnel
- Institut des Sciences Chimiques de Rennes, UMR 6226, Université de Rennes 1, Campus de Beaulieu Batiment 10B, Bureau, 15335042 Rennes, France
| | - Sartaj Tabassum
- Department of Chemistry Aligarh Muslim University, Aligarh, U.P. 202002, India
| | - Farukh Arjmand
- Department of Chemistry Aligarh Muslim University, Aligarh, U.P. 202002, India.
| |
Collapse
|
2
|
Varghese N, Jose JR, Krishna PM, Philip D, Joy F, Vinod TP, Prathapachandra Kurup MR, Nair Y. In vitro
Analytical Techniques as Screening Tools to investigate the Metal chelate‐DNA interactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202203615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Nikita Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560 029 Karnataka India
| | - Joyna Reba Jose
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560 029 Karnataka India
| | - P. Murali Krishna
- Department of Chemistry Ramaiah institute of technology MSRIT Post, M S Ramaiah Nagar Bengaluru 560054 Karnataka India
| | - Darit Philip
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560 029 Karnataka India
| | - Francis Joy
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560 029 Karnataka India
| | - T. P. Vinod
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560 029 Karnataka India
| | | | - Yamuna Nair
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560 029 Karnataka India
| |
Collapse
|
3
|
Jana A, Aher A, Brandao P, Sharda S, Bera P, Phadikar U, Manna SK, Mahapatra AK, Bera P. Dissociation of a tripodal pyridyl-pyrazole ligand and assortment of metal complex: Synthesis, structure, DFT, thermal stability, cytotoxicity, DNA cleavage, and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Gopalakrishnan AK, Angamaly SA, Velayudhan MP. An Insight into the Biological Properties of Imidazole‐Based Schiff Bases: A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202102619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anjali K. Gopalakrishnan
- Department of Applied Chemistry Cochin University of Science and Technology, Kochi 22 Kerala India
| | - Shanty A. Angamaly
- Department of Applied Chemistry Cochin University of Science and Technology, Kochi 22 Kerala India
| | - Mohanan P. Velayudhan
- Department of Applied Chemistry Cochin University of Science and Technology, Kochi 22 Kerala India
| |
Collapse
|
5
|
Günsel A, Kalkan F, Atmaca GY, Barut B, Bilgiçli AT, Pişkin H, Özel A, Erdoğmuş A, Yarasir MN. Synthesis of water‐soluble phthalocyanines containing 1‐methyl‐1
H
‐imidazole‐2‐thiol: Investigation of DNA nuclease, α‐glucosidase inhibitory, and photo‐physicochemical properties. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Armağan Günsel
- Department of Chemistry, Faculty of Arts and Sciences Sakarya University Serdivan Turkey
| | - Fatma Kalkan
- Department of Chemistry, Faculty of Arts and Sciences Sakarya University Serdivan Turkey
| | - Göknur Yaşa Atmaca
- Department of Chemistry, Faculty of Arts and Sciences Yıldız Technical University Istanbul Turkey
| | - Burak Barut
- Faculty of Pharmacy, Department of Biochemistry Karadeniz Technical University Trabzon Turkey
| | - Ahmet T. Bilgiçli
- Department of Chemistry, Faculty of Arts and Sciences Sakarya University Serdivan Turkey
| | - Hasan Pişkin
- Department of Physics, Faculty of Arts and Sciences Boğaziçi University İstanbul Turkey
| | - Arzu Özel
- Faculty of Pharmacy, Department of Biochemistry Karadeniz Technical University Trabzon Turkey
- Drug and Pharmaceutical Technology Application and Research Center Karadeniz Technical University Trabzon Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Faculty of Arts and Sciences Yıldız Technical University Istanbul Turkey
| | - M. Nilüfer Yarasir
- Department of Chemistry, Faculty of Arts and Sciences Sakarya University Serdivan Turkey
| |
Collapse
|
6
|
Sathiyanarayanan V, Prasath PV, Sekhar PC, Ravichandran K, Easwaramoorthy D, Mohammad F, Al-Lohedan HA, Oh WC, Sagadevan S. Docking and in vitro molecular biology studies of p-anisidine-appended 1-hydroxy-2-acetonapthanone Schiff base lanthanum(iii) complexes. RSC Adv 2020; 10:16457-16472. [PMID: 35692617 PMCID: PMC9122577 DOI: 10.1039/d0ra01936d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
A new series of lanthanum(iii) complexes was synthesized using a p-anisidine-appended 1-hydroxy-2-acetonapthanone (3) Schiff base and characterized via spectroscopic methods. The ligand was synthesized via sonication and the crystalline product was characterized using X-ray crystallography. The genotoxicity of the compound was assessed primarily by the bacterial reverse mutation (Ames) test and the in vitro mammalian chromosome aberration test; in both cases, the samarium complex 5 was found to be non-mutagenic. The anti-tumor activity of complexes 4, 5, and 6 was assayed against HeLa tumor cells and screened using the MTT assay. The IC50 value of complex 5 was found to be 34 ± 1.2 μg mL-1 and this compound exhibited superior activity towards the cells compared to 4 and 6. These results were further confirmed by Hoechst 33258 staining and AO/EI dual staining, which indicated that the cells underwent an apoptosis mechanism in a dose-dependent manner. The apoptosis was further confirmed by the formation of ladders in the DNA fragmentation assay, and the western blot analysis of complex 5 suggested that the cells underwent the caspase-3-dependent pathway with PARP cleavage. Furthermore, the docking studies of complex 5 with HSA showed that it was situated in a hydrophilic cavity held by the electrostatic attraction of four hydrogen-bonding interactions. PDB ID:1BNA binds with complex 5via strong π-π stacking interactions, which facilitate binding with the major grooves of DNA strands. The above-mentioned results illustrate that for complex 5, mitochondrion-mediated apoptosis occurs via caspase-3 activation. Complex 5 binds with DNA via intercalation because of S-phase cell cycle arrest in the HeLa cells.
Collapse
Affiliation(s)
- V Sathiyanarayanan
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur Chennai 600048 Tamilnadu India
- Department of Analytical Chemistry, Vanta Bioscience Limited, SIPCOT Industrial Complex Gummidipundi Tamilnadu - 601201 India
| | - P Varun Prasath
- Department of Analytical Chemistry, Madras University Guindy Chennai 600 025 Tamil Nadu India
| | - P Chandra Sekhar
- Department of Genetic Toxicology, Palamur Biosciences Pvt Ltd Mahabubnagar 509002 Telangana India
- School of Life Sciences, Manipal University Manipal 576104 Karnataka India
| | - K Ravichandran
- Department of Analytical Chemistry, Madras University Guindy Chennai 600 025 Tamil Nadu India
| | - D Easwaramoorthy
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur Chennai 600048 Tamilnadu India
| | - Faruq Mohammad
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Kingdom of Saudi Arabia
| | - Hamad A Al-Lohedan
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Kingdom of Saudi Arabia
| | - Won Chun Oh
- Department of Advanced Materials Science and Engineering, Hanseo University Seosan-si Chungnam 356-706 Korea
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
7
|
Slassi S, El‐Ghayoury A, Aarjane M, Yamni K, Amine A. New copper(II) and zinc(II) complexes based on azo Schiff base ligand: Synthesis, crystal structure, photoisomerization study and antibacterial activity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Siham Slassi
- LCBAE, Equipe Chimie Moléculaire et Molécules BioactivesUniversité Moulay Ismail, Faculté des Sciences Meknès Morocco
| | - Abdelkrim El‐Ghayoury
- Laboratoire MOLTECH‐AnjouUMR 6200, CNRS Univ Angers 2 bd Lavoisier Angers Cedex 49045 France
| | - Mohammed Aarjane
- LCBAE, Equipe Chimie Moléculaire et Molécules BioactivesUniversité Moulay Ismail, Faculté des Sciences Meknès Morocco
| | - Khalid Yamni
- Laboratoire de Chimie des Matériaux et Biotechnologie des Produits NaturelsEMaMePS Université Moulay Ismail, Faculté des Sciences Meknès Morocco
| | - Amina Amine
- LCBAE, Equipe Chimie Moléculaire et Molécules BioactivesUniversité Moulay Ismail, Faculté des Sciences Meknès Morocco
| |
Collapse
|
8
|
Lu X, Lin B, Xu N, Huang H, Wang Y, Lin JM. Evaluation of the accumulation of disulfiram and its copper complex in A549 cells using mass spectrometry. Talanta 2020; 211:120732. [PMID: 32070566 DOI: 10.1016/j.talanta.2020.120732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/04/2020] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
The famous alcohol-aversion drug disulfiram (DSF) is a promising candidate for repurposing in cancer therapy, as indicated by many ongoing and completed clinical trials. Existing researches focus on demonstrating that the anti-cancer activity of DSF is enhanced by copper ions, or solving the problem that DSF is easily decomposed in the body to lose its activity. However, the metabolic kinetics of its ultimate anti-cancer metabolite DDC-Cu (bis-diethyldithiocarbamate-copper) in cells and how it exerts anti-cancer mechanisms remain unclear. In this work, mass spectrometric evaluation of the intracellular and extracellular accumulation of DSF and its copper complex DDC-Cu was performed. Combined with cytotoxicity assay, staining analysis and flow cytometry, we found that DDC-Cu could easily pass through the cell membrane of A549 cells, and accumulate intracellularly for a long time. This process can lead to cellular morphological changes, an increase in ROS content, cell cycle arrest in the G0/G1 phase and apoptosis. Besides, molecular cancer-relevant targets of DDC-Cu in cancer cells were further discussed. This work investigated the cytotoxic mechanism of DDC-Cu, which has important clinical significance for its application in cancer therapy.
Collapse
Affiliation(s)
- Xinling Lu
- Department of Chemistry,School of Science,Tianjin University,Tianjin, 300075,China; Department of Chemistry,Beijing Key Laboratory of Microanalytical Methods and Instrumentation,MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University,Beijing, 100084,China
| | - Binxin Lin
- Department of Chemistry,Beijing Key Laboratory of Microanalytical Methods and Instrumentation,MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University,Beijing, 100084,China
| | - Ning Xu
- Department of Chemistry,Beijing Key Laboratory of Microanalytical Methods and Instrumentation,MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University,Beijing, 100084,China
| | - Hua Huang
- Department of Chemistry,School of Science,Tianjin University,Tianjin, 300075,China; Department of Chemistry,Beijing Key Laboratory of Microanalytical Methods and Instrumentation,MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University,Beijing, 100084,China
| | - Yong Wang
- Department of Chemistry,School of Science,Tianjin University,Tianjin, 300075,China.
| | - Jin-Ming Lin
- Department of Chemistry,Beijing Key Laboratory of Microanalytical Methods and Instrumentation,MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University,Beijing, 100084,China.
| |
Collapse
|
9
|
Qi XH, Wu ZM, Wang SB, Wang BX, Wang LL, Li H, Guo Q. Three novel Schiff base transition metal(II) complexes induce gastric cancer cell death through ROS-mediated apoptotic pathway. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1647535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiu-Heng Qi
- Department of Oncology, Central Hospital of China National Petroleum and Natural Gas Corporation, Langfang, China
| | - Zhen-Ming Wu
- Department of Oncology, Central Hospital of China National Petroleum and Natural Gas Corporation, Langfang, China
| | - Shuai-Bing Wang
- Department of Oncology, Central Hospital of China National Petroleum and Natural Gas Corporation, Langfang, China
| | - Bao-Xin Wang
- Department of Oncology, Central Hospital of China National Petroleum and Natural Gas Corporation, Langfang, China
| | - Ling-Ling Wang
- Department of Oncology, Central Hospital of China National Petroleum and Natural Gas Corporation, Langfang, China
| | - Haiyan Li
- Department of Orthopedics, People’s Hospital of Changshan, Quzhou, China
| | - Qian Guo
- Department of Oncology, Central Hospital of China National Petroleum and Natural Gas Corporation, Langfang, China
| |
Collapse
|
10
|
Rada JP, Bastos BSM, Anselmino L, Franco CHJ, Lanznaster M, Diniz R, Fernández CO, Menacho-Márquez M, Percebom AM, Rey NA. Binucleating Hydrazonic Ligands and Their μ-Hydroxodicopper(II) Complexes as Promising Structural Motifs for Enhanced Antitumor Activity. Inorg Chem 2019; 58:8800-8819. [DOI: 10.1021/acs.inorgchem.9b01195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jesica Paola Rada
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| | - Beatriz S. M. Bastos
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| | - Luciano Anselmino
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | | | | | - Renata Diniz
- Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Claudio O. Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Mauricio Menacho-Márquez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Ana Maria Percebom
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| | - Nicolás A. Rey
- Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
| |
Collapse
|
11
|
Synthesis and characterisations of copper(II) complexes of 5-methoxyisatin thiosemicarbazones: Effect of N-terminal substitution on DNA/protein binding and biological activities. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Abdel‐Mohsen MA, Toson EA, Helal MA. Oncostatic treatment effect of triple negative breast cancer cell line with copper (I)‐nicotinate complex. J Cell Biochem 2018; 120:4278-4290. [DOI: 10.1002/jcb.27713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Mohamed A. Abdel‐Mohsen
- Department of Applied Medical Chemistry Medical Research Institute, Alexandria University Alexandria Egypt
| | - Elshahat A. Toson
- Department of Chemistry Faculty of Science, Damietta University Damietta Egypt
| | - Marihan A. Helal
- Department of Chemistry Faculty of Science, Damietta University Damietta Egypt
| |
Collapse
|
13
|
Gao E, Xing J, Qu Y, Qiu X, Zhu M. Synthesis, characterization, DNA binding, cytotoxicity and molecular docking properties of Cu (II) and Mn (II) complexes with 1,4-bis (pyrazol-1-yl) terephthalic acid. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Enjun Gao
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 People's Republic of China
| | - Jialing Xing
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 People's Republic of China
| | - Yun Qu
- Department of Oncology; Shengjing Hospital of China Medical University; Shenyang People's Republic of China
| | - Xue Qiu
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 People's Republic of China
| | - Mingchang Zhu
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 People's Republic of China
| |
Collapse
|
14
|
Guricová M, Pižl M, Smékal Z, Nádherný L, Čejka J, Eigner V, Hoskovcová I. Template synthesis and structure of Co(II), Ni(II), and Cu(II) complexes with pyridoxilydenetaurinate Schiff base ligand. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Tesson M, Anselmi G, Bell C, Mairs R. Cell cycle specific radiosensitisation by the disulfiram and copper complex. Oncotarget 2017; 8:65900-65916. [PMID: 29029481 PMCID: PMC5630381 DOI: 10.18632/oncotarget.19539] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/29/2017] [Indexed: 12/14/2022] Open
Abstract
The disulfiram and copper complex (DSF:Cu) has emerged as a potent radiosensitising anti-cancer agent. The ability of copper to stabilise DSF in a planar conformation and to inhibit DNA replication enzymes stimulated our investigation of the effect of DSF:Cu on cell cycle regulation. Flow cytometry and immunoblotting were used to assess the effect of DSF:Cu on cell cycle progression of the neuroblastoma cell line SK-N-BE(2c) and the glioma cell line UVW. Treatment with 0.1 and 0.3 μM DSF:Cu inhibited DNA synthesis in SK-N-BE(2c) and UVW cells, respectively. The increased potency of ionising radiation treatment induced by DSF:Cu and/or gemcitabine was determined by clonogenic assay. Treatment with 0.3 μM DSF:Cu resulted in greater radiation kill, exemplified by dose enhancement factor values of 2.64 and 2.84 in SK-N-BE(2c) and UVW cells, respectively. Although DSF:Cu failed to sensitise S phase cells to irradiation, we observed that DSF:Cu radiosensitisation was potentiated by the S phase-specific cytotoxic drug gemcitabine. The efficacy of the combination treatment consisting of DSF:Cu, gemcitabine and ionising radiation was schedule-dependent. Together, these results describe cell cycle specific radiosensitisation by DSF:Cu. The well-established toxicity profiles of DSF and gemcitabine should facilitate their evaluation as a combination treatment in patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Mathias Tesson
- Radiation Oncology, Institute of Cancer Sciences, Wolfson Wohl Translational Cancer Research Center, University of Glasgow, Bearsden, Glasgow, UK
| | - Giorgio Anselmi
- Centre for Molecular and Cellular Biology of Inflammation, Peter Gorer Department of Immunobiology, Division of Immunology, Infection and Inflammatory Diseases, King's College London, London, UK
| | - Caitlin Bell
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
| | - Robert Mairs
- Radiation Oncology, Institute of Cancer Sciences, Wolfson Wohl Translational Cancer Research Center, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
16
|
Li M, Huang S, Cai Q, Xie Y. Spectroscopic investigation and in vitro cytotoxic activity toward HepG2 cells of a copper compound complexed with human serum albumin. LUMINESCENCE 2017; 32:888-898. [PMID: 28371207 DOI: 10.1002/bio.3272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 10/10/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
Abstract
The human serum albumin (HSA) interaction of a mixed-ligand copper compound (1) with an imidazole and taurine Schiff base derived from salicylaldehyde and taurine was investigated using fluorescence spectroscopy, UV-vis spectroscopy, time-resolved fluorescence spectroscopy, circular dichroism (CD) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and a molecular docking technique. The results of fluorescence and time-resolved fluorescence spectroscopy indicated that 1 can effectively quench the HSA fluorescence by a static mechanism. Binding constants (K) and the number of binding sites (n ≈ 1) were calculated using modified Stern-Volmer equations. The thermodynamic parameters were calculated. UV-vis, CD and FT-IR spectroscopy measurements confirm the alterations in the HSA secondary structure induced by 1. The site marker competitive experiment confirms that 1 is located in subdomain IB of HSA. The combination of molecular docking results and fluorescence experimental results reveal that hydrophobic interaction and hydrogen bonds are the predominant intermolecular forces stabilizing the 1-HSA complex. The 1-HSA complex increases approximately three times its cytotoxicity in cancer cells but has no effect on normal cells in vitro. Compared with unbound 1, the 1-HSA complex promotes HepG2 cells apoptosis and also has a stronger capacity for cell cycle arrest at the S phase of HepG2 cells.
Collapse
Affiliation(s)
- Mei Li
- Key Laboratory of Jiangxi University for Functional Material Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - ShuJuan Huang
- Key Laboratory of Jiangxi University for Functional Material Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Qingyou Cai
- College of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - YongRong Xie
- Key Laboratory of Jiangxi University for Functional Material Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
17
|
Zhan G, Pan L, Tu K, Jiao S. Antitumor, Antioxidant, and Nitrite Scavenging Effects of Chinese Water Chestnut (Eleocharis dulcis) Peel Flavonoids. J Food Sci 2016; 81:H2578-H2586. [PMID: 27603811 DOI: 10.1111/1750-3841.13434] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/21/2016] [Accepted: 07/29/2016] [Indexed: 12/14/2022]
Abstract
The preparation, quantification, and characterization of flavonoid compounds from Chinese water chestnut peel (CWCP) flavonoid extract and ethyl acetate fraction (EF), n-butanol fraction, and water fraction were studied. Among these, EF showed the maximum free radical levels (IC50 values of 0.36, 0.40, and 0.37 mg/mL for DPPH•, ABTS•+ , and •OH, respectively), nitrite scavenging effects (IC50 = 1.89 mg/mL), and A549 cell inhibitory activities (IC50 = 776.12 μg/mL) with the highest value of total flavonoid content (TFC, 421.32 mg/g). Moreover, the contents of 8 flavonoids in this fraction were quantified using high-performance liquid chromatography, and fisetin, diosmetin, luteolin, and tectorigenin were the 4 major flavonoids with levels of 31.66, 29.91, 13.69, and 12.41 mg/g, respectively. Luteolin produced a greater inhibition of human lung cancer A549 cells (IC50 = 59.60 μg/mL) than did fisetin, diosmetin, and tectorigenin. Flow cytometry revealed that the cellular mechanisms of luteolin inhibition of A549 cells were achieved via the induction of cell proliferation arrest at G1 phase and apoptosis/necrosis. Our findings suggest that flavonoids are closely associated with antitumor, antioxidant, and nitrite scavenging effects of CWCP.
Collapse
Affiliation(s)
- Ge Zhan
- College of Food Science and Technology, Nanjing Agricultural Univ, Nanjing, Jiangsu, China.,School of Biological and Food Engineering, Chuzhou Univ, Chuzhou, Anhui, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural Univ, Nanjing, Jiangsu, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural Univ, Nanjing, Jiangsu, China.
| | - Shunshan Jiao
- School of Agriculture and Biology, Shanghai Jiao Tong Univ, Shanghai, China
| |
Collapse
|
18
|
Zhang XT, Ma ZY, Zhao C, Zhou QJ, Xie CZ, Xu JY. Synthesis, crystal structures, DNA binding, and cytotoxicity activities of two copper(II) complexes based on unsymmetrical tripodal ligands. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1040781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xiao-Tong Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, PR China
| | - Zhong-Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, PR China
| | - Chuan Zhao
- China Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qi-Ji Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, PR China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, PR China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, PR China
| |
Collapse
|
19
|
Synthesis and antimicrobial properties of lipophilic Schiff base copper and palladium complexes. TRANSIT METAL CHEM 2015. [DOI: 10.1007/s11243-015-9953-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Yadav M, Mishra N, Sharma N, Chandra S, Kumar D. Microwave assisted synthesis, characterization and biocidal activities of some new chelates of carbazole derived Schiff bases of cadmium and tin metals. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 132:733-742. [PMID: 24929756 DOI: 10.1016/j.saa.2014.04.185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/24/2014] [Accepted: 04/30/2014] [Indexed: 06/03/2023]
Abstract
This study is planned to report the advancement of green microwave approach in the fabrication of a new series of biologically potent (N^X, where X=O/S) donor Schiff bases and their cadmium(II) and tin(II) complexes. The ligands and their metal complexes have been characterized in terms of elemental analysis, molar ionic conductance, magnetic moment and spectral (IR, UV-Vis, NMR ((1)H, (119)Sn), FAB-mass, thermal and XRD) data. The data revealed that the ligands coordinated to the metal center via nitrogen and oxygen/sulfur atoms and form an octahedral arrangement of the ligands around central metal atom. All compounds were evaluated for their in vitro antimicrobial activities against two pathogenic bacteria Bacillus subtilis and Escherichia coli and two fungi Aspergillus niger and Aspergillus flavus by standard disc diffusion method. The discs were stored in an incubator at 37°C. The compounds were dissolved in DMF at 500 and 1000 ppm concentrations for screening biocidal activity. The compounds were dissolved in DMF to get the 100 and 200 ppm concentration of test solutions for screening fungicidal activity. The inhibition zone around each disc was measured (in mm) after 24 h and 96 h for biocidal and fungicidal activities respectively.
Collapse
Affiliation(s)
- Manju Yadav
- Department of Chemistry, Banasthali University, Banasthali, Rajasthan 304022, India
| | - Neelima Mishra
- Department of Chemistry, Banasthali University, Banasthali, Rajasthan 304022, India
| | - Nutan Sharma
- Department of Chemistry, Banasthali University, Banasthali, Rajasthan 304022, India
| | - Sulekh Chandra
- Department of Chemistry, Zakir Husain College, University of Delhi, J.L. Nehru Marg, New Delhi 110002, India
| | - Dinesh Kumar
- Department of Chemistry, Banasthali University, Banasthali, Rajasthan 304022, India.
| |
Collapse
|