1
|
Tavallali H, Parhami A, Rajaei Dastghaib S, Karimi MA. A novel and simple naphthol azo dye chemosensor as a naked eye detection tool for highly selective, sensitive and accurate determination of thiourea in tap water, juices and fruit skins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122194. [PMID: 36512963 DOI: 10.1016/j.saa.2022.122194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
In the present study, a highly accurate and sensitive azo-dye-based colorimetric sensor based on Eriochrome Black T (EBT) was proposed to detect and determine thiourea (TU). TU is truly an important toxic and carcinogenic hazardous pollutant as approved by EPA and IARC. This chemosensor shows a distinct color change from blue to pink during interaction with TU in aqueous medium. So EBT is capable as an applied tool for naked eye detection of TU as its color change is easily observed without any means. The sensing mechanism was also investigated using UV-vis absorption and FT-IR spectra. The linear range and the detection limit of TU sensing were respectively 0.15-18.5 μmol/L and 0.02 μmol/L. In addition, the relative standard deviation (RSD) based on ten repetitions calculated for two different TU concentrations 4.4 and 9.0 μmol/L were 2.3 % and 1.8 %, respectively. Besides its useful application as a naked eye detection tool, the advantages of the developed method include simplicity, elimination of tedious separation and pre-concentration steps, executable in neutral aqueous media, low costs, high accuracy, linear response for wide range of concentrations, low detection limit, high sensitivity, compatibility, and excellent selectivity. The concentration of TU in tap water, fruit juices or fruit skin samples can be visually detected and determined easily using this method. The results showed that EBT is an ideal colorimetric chemosensor for TU, which has been reported for the first time.
Collapse
Affiliation(s)
- Hossein Tavallali
- Department of Chemistry, Payame Noor University, 19395-4697 Tehran, Islamic Republic of Iran.
| | - Abolfath Parhami
- Department of Chemistry, Payame Noor University, 19395-4697 Tehran, Islamic Republic of Iran
| | - Shiva Rajaei Dastghaib
- Department of Chemistry, Payame Noor University, 19395-4697 Tehran, Islamic Republic of Iran
| | - Mohammad Ali Karimi
- Department of Chemistry, Payame Noor University, 19395-4697 Tehran, Islamic Republic of Iran
| |
Collapse
|
2
|
Yang Q, Niu B, Gu S, Ma J, Zhao C, Chen Q, Guo D, Deng X, Yu Y, Zhang F. Rapid Detection of Nonprotein Nitrogen Adulterants in Milk Powder Using Point-Scan Raman Hyperspectral Imaging Technology. ACS OMEGA 2022; 7:2064-2073. [PMID: 35071894 PMCID: PMC8772326 DOI: 10.1021/acsomega.1c05533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
To develop a rapid detection method for nonprotein nitrogen adulterants, this experiment sets up a set of point-scan Raman hyperspectral imaging systems to qualitatively distinguish and quantitatively and positionally analyze samples spiked with a single nonprotein nitrogen adulterant and samples spiked with a mixture of nine nonprotein nitrogen adulterants at different concentrations (5 × 10-3 to 2.000%, w/w). The results showed that for samples spiked with single nonprotein nitrogen adulterants, the number of pixels corresponding to the adulterant in the region of interest increased linearly with an increase in the analyte concentration, the average coefficient of determination (R 2) was above 0.99, the minimum detection concentration of nonprotein nitrogen adulterants reached 0.010%, and the relative standard deviation (RSD) of the predicted concentration was less than 6%. For the sample spiked with a mixture of nine nonprotein nitrogen adulterants, the standard curve could be used to accurately predict the additive concentration when the additive concentration was greater than 1.200%. The detection method established in this study has good accuracy, high sensitivity, and strong stability. It provides a method for technical implementation of real-time and rapid detection of adulterants in milk powder at the port site and has good application and promotion prospects.
Collapse
Affiliation(s)
- Qiaoling Yang
- School
of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- School
of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Bing Niu
- School
of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Shuqing Gu
- Technical
Center for Animal, Plant and Food Inspection
and Quarantine, Shanghai Customs, Shanghai 200135, P. R. China
| | - Jinge Ma
- Technical
Center for Animal, Plant and Food Inspection
and Quarantine, Shanghai Customs, Shanghai 200135, P. R. China
| | - Chaomin Zhao
- Technical
Center for Animal, Plant and Food Inspection
and Quarantine, Shanghai Customs, Shanghai 200135, P. R. China
| | - Qin Chen
- School
of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Dehua Guo
- Technical
Center for Animal, Plant and Food Inspection
and Quarantine, Shanghai Customs, Shanghai 200135, P. R. China
| | - Xiaojun Deng
- Technical
Center for Animal, Plant and Food Inspection
and Quarantine, Shanghai Customs, Shanghai 200135, P. R. China
| | - Yongai Yu
- Shanghai
Oceanhood opto-electronics tech Co., LTD., Shanghai 201201, P. R. China
| | - Feng Zhang
- Chinese
Academy of Inspection and Quarantine, Beijing 100176, P. R.
China
| |
Collapse
|
3
|
Hu Q, Chen S, Chen F. Determination of thiourea by terbium (III)/ prulifloxacin sensitized potassium permanganate-sulfite chemiluminescence with quenching method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120332. [PMID: 34488001 DOI: 10.1016/j.saa.2021.120332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Based on the thiourea quenching of the chemiluminescence of Tb3+/ prulifloxacin (PUFX) sensitized KMnO4-Na2SO3 system, a convenient and rapid chemiluminescence method for the determination of thiourea was proposed. The reaction between KMnO4 and Na2SO3 brought only weak chemiluminescence, but the chemiluminescence increased sharply in the presence of sensitizer Tb3+/ PUFX. Addition of thiourea can prevent the reaction between KMnO4 and Na2SO3, thus the chemiluminescence intensity was significantly decreased. Under the optimum conditions, the calibration graphs for thiourea were linear in the range of 1.0 × 10-7 to 4.0 × 10-5 mol•L-1. The limit of detection was 6.4 × 10-8 mol•L-1. The method was applied satisfactorily to the determination of thiourea in tap water, lake water and rice noodles and the spiked recoveries were between 104.7 ~ 113.4%. The possible mechanism of sensitization and quenching was also proposed.
Collapse
Affiliation(s)
- Qi Hu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica; Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Si Chen
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica; Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Fang Chen
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica; Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China.
| |
Collapse
|
4
|
Jaccoulet E, Daniel T, Dammak D, Prognon P, Caudron E. Interest of flow injection spectrophotometry as an orthogonal method for analyzing biomolecule aggregates: Application to stressed monoclonal antibody study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119436. [PMID: 33461132 DOI: 10.1016/j.saa.2021.119436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to explore the suitability of flow injection spectrophotometry (FIS) to analyze three degraded therapeutic monoclonal antibodies (bevacizumab, nivolumab, and rituximab). For this purpose, aggregates were generated with stirring, freeze-thaw, and heat stresses. The intact and stressed mab samples were filtered with 0.22 µm hydrophilic filters and analyzed by size exclusion chromatography (SEC), cation-exchange chromatography (CEX), and FIS. In terms of quantitative and qualitative analysis, protein loss and structural changes were assessed. Various aggregates profiles were obtained according to the mabs and the stresses. FIS allowed performing very satisfactory quantifications for each mab with intermediate precision RSD < 3.0 % and recovery between 97.9 and 102.0 %. From the protein loss measurements, it appears that SEC underestimates the mab aggregate proportions up to two times less as compared with FIS since the latter avoids any non-specific interactions (electrostatic or hydrophobic interactions). Using second derivative spectroscopy and multivariate data analysis, we noticed apparent structural differences, located in the regions 245-265 nm for rituximab and nivolumab and 280-300 nm for bevacizumab, depending on the stress. The FIS complementarity with the other techniques used in this study allowed us to demonstrate that the three mabs behave differently for a given stress condition. While extreme mechanical stress formed large aggregates irrespective of the mabs, rituximab showed to be less stable and more sensitive than the two other mabs under freeze-thaw and heat stresses, generating large aggregates (>200 nm) and partial unfolding. Nivolumab tends to form small aggregates less than 50 nm when heated and freeze-thawed. Moreover, freeze-thaw seems to generate native IgG-1 aggregates with rituximab. Similarly, bevacizumab showed to form these IgG-1 aggregates and was resistant to freeze-thaw, likely thanks to trehalose cryoprotectant from its formulation. Finally, FIS associated with multivariate analysis can provide rich information in one single run and appears to be a fast, simple, and reliable method to set complementary and orthogonal approaches for protein aggregates monitoring.
Collapse
Affiliation(s)
- E Jaccoulet
- Service de Pharmacie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - T Daniel
- Service de Pharmacie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - D Dammak
- Service de Pharmacie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - P Prognon
- Service de Pharmacie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Lip(Sys)(2) Chimie Analytique Pharmaceutique, Univ. Paris-Sud, Université Paris-Saclay (EA4041 Groupe de Chimie Analytique de Paris-Sud), F-92290 Châtenay-Malabry, France
| | - E Caudron
- Service de Pharmacie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Lip(Sys)(2) Chimie Analytique Pharmaceutique, Univ. Paris-Sud, Université Paris-Saclay (EA4041 Groupe de Chimie Analytique de Paris-Sud), F-92290 Châtenay-Malabry, France
| |
Collapse
|
5
|
Zhao Y, Fu Q, Cui X, Chi H, Lu Y, Liu X, Yu M, Fei Q, Feng G, Shan H, Huan Y. A colorimetric sensor for detecting thiourea based on inhibiting peroxidase-like activity of gold-platinum nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1069-1074. [PMID: 33576364 DOI: 10.1039/d0ay02283g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, gold-platinum nanoparticles (Au@PtNPs) with peroxidase-like activity were synthesized. In the absence of thiourea (TU), the Au@PtNPs can catalyze the decomposition of hydrogen peroxide, and oxidize 3,3',5,5'-tetramethylbenzidine dihydrochloride (TMB, colorless) into oxidized 3,3',5,5'-tetramethylbenzidine dihydrochloride (oxTMB, blue). The peroxidase-like activity of the Au@PtNPs is inhibited in the presence of TU, and TMB cannot be oxidized to oxTMB effectively, and no blue color could be observed. Based on this finding, a novel colorimetric sensor for detecting TU is proposed. The absorbance response curve showed a good linearity for the concentration of TU in the range of 10 nmol L-1 to 10 μmol L-1 with a correlation coefficient of R2 = 0.999, and the limit of detection is 9.57 nmol L-1. The colorimetric sensor possesses excellent selectivity, anti-interference ability, and application value in actual samples.
Collapse
Affiliation(s)
- Yuqi Zhao
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Qingjie Fu
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Xiaoqian Cui
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Hui Chi
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Yongzhuang Lu
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Xiaoli Liu
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Miao Yu
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Qiang Fei
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Guodong Feng
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Hongyan Shan
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Yanfu Huan
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| |
Collapse
|
6
|
Zhang C, Wu S, Yu Y, Chen F. Determination of thiourea based on the reversion of fluorescence quenching of nitrogen doped carbon dots by Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117666. [PMID: 31670045 DOI: 10.1016/j.saa.2019.117666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Herein, a facile and quick strategy to detect thiourea was conducted based on the reversion of fluorescence quenching of nitrogen doped carbon dots (NCDs) by Hg2+. The NCDs with good water solubility and 17% of quantum yield was synthesized by one-step hydrothermal method, using ammonium citrate and dextrin as carbon source and nitrogen source, respectively. The fluorescence of NCDs was obviously quenched by Hg2+ and can be recovered, due to stronger interaction between thiourea and Hg2+. There was a good linear relationship between the recovered fluorescence and the concentration of thiourea within range of 0.90-10.0 μM and the detection limit for thiourea detection was 0.15 μM. The as-prepared NCDs can be used for determination of thiourea in tap water, lake water and rice flour products, and the spike recoveries were between 91.6 and 108%.
Collapse
Affiliation(s)
- Cengceng Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key laboratory of Material Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Shu Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key laboratory of Material Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yuanyuan Yu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key laboratory of Material Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Fang Chen
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key laboratory of Material Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China.
| |
Collapse
|
7
|
Granado-Castro M, Díaz-de-Alba M, Chinchilla-Real I, Galindo-Riaño M, García-Vargas M, Casanueva-Marenco M. Coupling liquid membrane and flow-injection technique as an analytical strategy for copper analysis in saline water. Talanta 2019; 192:374-379. [DOI: 10.1016/j.talanta.2018.09.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 11/26/2022]
|
8
|
Liu Y, Han S. Chemiluminescence of Nitrogen-Doped Carbon Quantum Dots for the Determination of Thiourea and Tannic Acid. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0911-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Rohani Moghadam M, Akbarzadeh S, Nasirizadeh N. Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1723-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|