1
|
Wang D, Wang J, Lang Y, Huang M, Hu S, Liu H, Sun B, Long Y, Wu J, Dong W. Interactions between food matrices and odorants: A review. Food Chem 2025; 466:142086. [PMID: 39612859 DOI: 10.1016/j.foodchem.2024.142086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/20/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
Currently, although odorants of various foods have been thoroughly studied, the regulation of food aromas is still difficult due to the interaction between odorants and food matrices. These complex matrices in food may interact with odorants to change the volatility of odorants, which in turn affect food aroma. Clarifying the interaction between them are promising for predicting food aroma formation, which will provide valuable support for a high-efficiency food industry. Herein, the research progresses on interactions between food matrices and odorants are reviewed. First, the analysis methods and their advantages and disadvantages are introduced and discussed emphatically, including sensory-analysis methods, characterization methods of the volatility changes of odorants, and the research methods of interaction mechanism. Further, the research advances of interactions among proteins, carbohydrates, lipids, and polyphenols with odorants are summarized briefly. Finally, the existing problems are discussed and the research prospects are proposed.
Collapse
Affiliation(s)
- Danqing Wang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Juan Wang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Ying Lang
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Mingquan Huang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China.
| | - Shenglan Hu
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Hongqin Liu
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China.
| | - Yao Long
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Jihong Wu
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Wei Dong
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| |
Collapse
|
2
|
Pang HL, Zhang LT, Zhang YT, Ren Q. Separation and purification of bovine nasal cartilage-derived chondroitin sulfate and evaluation of its binding to bovine serum albumin. Int J Biol Macromol 2024; 277:134501. [PMID: 39111483 DOI: 10.1016/j.ijbiomac.2024.134501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
This study employs an optimized and environmentally friendly method to extract and purify chondroitin sulfate (CS) from bovine nasal cartilage using enzymatic hydrolysis, ethanol precipitation, and DEAE Sepharose Fast Flow column chromatography. The extracted CS, representing 44.67 % ± 0.0016 of the cartilage, has a molecular weight of 7.62 kDa. Characterization through UV, FT-IR, NMR spectroscopy, and 2-aminoacridone derivatization HPLC revealed a high content of sulfated disaccharides, particularly ΔDi4S (73.59 %) and ΔDi6S (20.61 %). Interaction studies with bovine serum albumin (BSA) using fluorescence spectroscopy and molecular docking confirmed a high-affinity, static quenching interaction with a single binding site, primarily mediated by van der Waals forces and hydrogen bonding. The interaction did not significantly alter the polarity or hydrophobicity of BSA aromatic amino acids. These findings provide a strong foundation for exploring the application of CS in tissue engineering and drug delivery systems, leveraging its unique interaction with BSA for targeted delivery and enhanced efficacy.
Collapse
Affiliation(s)
- Hai-Long Pang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Li-Tao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Yun-Tao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
3
|
Lu H, Li Z, Zhou Y, Jiang H, Liu Y, Hao C. Horizontal comparison of "red or blue shift" and binding energy of six fluoroquinolones: Fluorescence quenching mechanism, theoretical calculation and molecular modeling method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121383. [PMID: 35597157 DOI: 10.1016/j.saa.2022.121383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
In this article, the interaction between six fluoroquinolones (FQs) and bovine serum albumin (BSA) was initially studied at 298 K, 303 K and 310 K respectively under simulated physiological conditions by fluorescence spectroscopy. At the same time, the sub-structural domains on BSA that may bind to FQs were investigated by molecular docking simulation technique. A combination of quantitative and qualitative approaches was used in the analysis of the binding constants, binding sites and corresponding thermodynamic parameters in the interaction system, it was found that FQs forms a complex with BSA and undergoes static quenching, which is the main cause of fluorescence quenching. The results indicated that hydrogen bonds, Van der Waals force and electrostatic interaction were the main binding forces between the complexes, it also showed that these six fluoroquinolones mainly bound to the IIA and IIIA structural domains of BSA, while DANO and SARA may be more toxic than other antibiotics. Based on Foster's non-radiative energy transfer theory, the binding distance between FQs and BSA was calculated to be less than 7 nm, indicating the existence of energy transfer between small molecule drugs and proteins. Synchronous fluorescence and UV-Vis absorption spectroscopy further confirmed that FQs can alter the secondary conformational change of BSA. Lomefloxacin has a different effect from the other five fluoroquinolone antibiotics because it causes a decrease in polarity and an increase in hydrophobicity around tryptophan residues, while the other five FQs have the opposite effect. Together, the study of FQs-BSA is of great significance to elucidate the pharmacokinetics and pharmacodynamics of FQs.
Collapse
Affiliation(s)
- Haonan Lu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Zishan Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Yongshan Zhou
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Hao Jiang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Changchun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
4
|
Elucidation of interaction mechanisms between myofibrillar proteins and ethyl octanoate by SPME-GC-MS, molecular docking and dynamics simulation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Wang H, Xia X, Yin X, Liu H, Chen Q, Kong B. Investigation of molecular mechanisms of interaction between myofibrillar proteins and 1-heptanol by multiple spectroscopy and molecular docking methods. Int J Biol Macromol 2021; 193:672-680. [PMID: 34710478 DOI: 10.1016/j.ijbiomac.2021.10.105] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 01/13/2023]
Abstract
In this study, we investigated the interaction between myofibrillar proteins (MPs) and selected alcohols (1-pentanol, 1-hexanol, and 1-heptanol). Only 1-heptanol exhibited the binding ability to MPs, and the binding ability significantly increased with increasing protein concentration (p < 0.05). In addition, both static and dynamic quenching occurred during the interaction, with a red shift of the maximum absorption peak in the synchronous fluorescence spectra indicating a change in the microenvironment of the MPs. The results of circular dichroism measurements suggested that the interaction between MPs and 1-heptanol altered the secondary structure of the MPs. Furthermore, thermodynamic analysis showed that hydrogen bonding and van der Waals forces dominated the interaction between MPs and 1-heptanol, which was confirmed by the results of molecular docking/dynamics simulations. This study provides an in-depth understanding of the interaction between MPs and alcohols, which can help to improve the flavor control in meat.
Collapse
Affiliation(s)
- Haitang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoyu Yin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
6
|
Alves JEF, Lucena MLC, de Souza Lucena AE, das Merces AAD, de Azevedo RDS, Sousa GLS, de Moura RO, Alves de Lima MDC, de Carvalho Júnior LB, de Almeida SMV. A simple method for obtaining human albumin and its use for in vitro interaction assays with indole-thiazole and indole-thiazolidinone derivatives. Int J Biol Macromol 2021; 192:126-137. [PMID: 34562539 DOI: 10.1016/j.ijbiomac.2021.09.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022]
Abstract
This work aimed to develop a simple and low-cost method to obtain human serum albumin (HSA) and its consequent application for in vitro drug interaction assays. The HSA was purified by classic principles of plasma precipitation and thermocoagulation, using a multiple-stage fractionation. The quality of the final product was assessed by electrophoresis, protein dosage by the Lowry method and the pharmacopeial thermal stability. At the end, an isotonic solution of HSA with a total protein concentration of 2.7 mg·mL-1 was obtained, which was visualized as a single band corresponding to the molecular weight of 66 kDa. After the thermal stability test, there was no indication of turbidity or color change of the solution. Finally, the HSA was useful for interaction assays with indole-thiazole and indole-thiazolidinone derivatives through UV-vis absorption and fluorescence spectroscopic studies, as well as by docking molecular analysis. Derivatives quenched the intrinsic fluorescence of HSA, disrupted the tryptophan residues microenvironment, and probably bind at Sudlow's site I. Therefore, the simplified methodology developed in this work proved to be effective in obtaining HSA that can be applied to research goals including drug interaction assays.
Collapse
Affiliation(s)
| | | | | | | | - Rafael David Souto de Azevedo
- Laboratório de Biologia Molecular, Universidade de Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil
| | - Gleyton Leonel Silva Sousa
- Programa de Doutorado em Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23897-000, Brazil
| | - Ricardo Olimpio de Moura
- Departamento de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, João Pessoa, PB 58429-500, Brazil
| | - Maria do Carmo Alves de Lima
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | | | - Sinara Mônica Vitalino de Almeida
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil; Laboratório de Biologia Molecular, Universidade de Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil.
| |
Collapse
|
7
|
Ribeiro AG, Alves JEF, Soares JCS, dos Santos KL, Jacob ÍTT, da Silva Ferreira CJ, dos Santos JC, de Azevedo RDS, de Almeida SMV, de Lima MDCA. Albumin roles in developing anticancer compounds. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02748-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Caruso ÍP, Vilegas W, Cristante de Oliveira L, Cornélio ML. Fluorescence spectroscopic and dynamics simulation studies on isoorientin binding with human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117738. [PMID: 31718973 DOI: 10.1016/j.saa.2019.117738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Isoorientin (ISOO) a glycosylated flavonoid found in acai berry exhibits relevant activities such as antidiabetic and antidepressant. However, its physicochemical action on any molecular target is scarcely known. In this work, we tackle the problem about the binding of ISOO to human serum albumin (HSA) applying fluorescence spectroscopy bimodal analysis aided by computational simulations. A static quenching process was detected having hypsochromic shift with implication in the polarizability around the endogenous probe (Trp 214) during complex formation. The binding mechanism reveals that all sites are equivalents and independents with binding constant value of 9.1 × 104 M-1 and, a total of six sites accessed whereas three of them were identified experimentally. The thermodynamic evaluation indicates that the complex formation is spontaneous (ΔG<0). The dynamics and docking simulations corroborated the experimental data by adding details of each site and its respective microenvironment.
Collapse
Affiliation(s)
- Ícaro Putinhon Caruso
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, Rua Cristovão Colombo 2265, CEP 15054-000, São José do Rio Preto, SP, Brazil; Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Instituto de Bioquímica Média e Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), UFRJ, Ilha do Fundão, CEP 21941-590, Rio de Janeiro, RJ, Brazil.
| | - Wagner Vilegas
- Laboratório de Bioprospecção de Produtos Naturais (LBPN), Instituto de Biociências, UNESP, Praça Infante Dom Henrique, CEP 11380-972, São Vicente, SP, Brazil.
| | - Leandro Cristante de Oliveira
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, Rua Cristovão Colombo 2265, CEP 15054-000, São José do Rio Preto, SP, Brazil.
| | - Marinônio Lopes Cornélio
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, Rua Cristovão Colombo 2265, CEP 15054-000, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
9
|
Insights into the binding mechanism of a model protein with fomesafen: Spectroscopic studies, thermodynamics and molecular modeling exploration. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
da Silva Filho FA, de Freitas Souza T, Ribeiro AG, Alves JEF, de Oliveira JF, de Lima Souza TRC, de Moura RO, do Carmo Alves de Lima M, de Carvalho Junior LB, de Almeida SMV. Topoisomerase inhibition and albumin interaction studies of acridine-thiosemicarbazone derivatives. Int J Biol Macromol 2019; 138:582-589. [PMID: 31323270 DOI: 10.1016/j.ijbiomac.2019.07.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
Abstract
In the present study, acridine-thiosemicarbazones (ATD) derivatives were tested for their interaction properties with BSA through UV-Vis absorption and fluorescence spectroscopic studies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated after the derivatives were added to the BSA. Values for the binding constant (Kb) ranged from 1.62 × 104 to 8.71 × 105 M-1 and quenching constant (KSV) from 3.46 × 102 to 7.83 × 103 M-1 indicating a good affinity to BSA protein. Complementary, two compounds were selected to assess their inhibition activity against topoisomerase IIα enzyme, of which derivative 3a presented the best result. Moreover, to evaluate protein-ligand interactions, as well as the antitopoisomerase potential of these compounds, tests of molecular modeling were performed between all compounds using the albumin and Topoisomerase IIα/DNA complex. Finally, in silico studies showed that all derivatives used in this research displayed good oral bioavailability potential.
Collapse
Affiliation(s)
- Francivaldo Araújo da Silva Filho
- Universidade de Pernambuco (UPE), campus Garanhuns, Faculdade de Ciências, Educação e Tecnologia de Garanhuns (FACETEG), Garanhuns, PE, Brazil
| | - Thais de Freitas Souza
- Universidade de Pernambuco (UPE), campus Garanhuns, Faculdade de Ciências, Educação e Tecnologia de Garanhuns (FACETEG), Garanhuns, PE, Brazil
| | - Amélia Galdino Ribeiro
- Laboratório de Química e Inovação Terapêutica (LQIT), Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Jamerson Ferreira de Oliveira
- Laboratório de Química e Inovação Terapêutica (LQIT), Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Ricardo Olímpio de Moura
- Departamento de Ciências Farmacêuticas, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba - Bodocongo, Campina Grande, PB, Brazil
| | - Maria do Carmo Alves de Lima
- Laboratório de Química e Inovação Terapêutica (LQIT), Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Sinara Mônica Vitalino de Almeida
- Universidade de Pernambuco (UPE), campus Garanhuns, Faculdade de Ciências, Educação e Tecnologia de Garanhuns (FACETEG), Garanhuns, PE, Brazil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
11
|
de Alcântara-Contessoto NS, Caruso ÍP, Bezerra DP, Filho JMB, Cornélio ML. An investigation into the interaction between piplartine (piperlongumine) and human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 220:117084. [PMID: 31136859 DOI: 10.1016/j.saa.2019.04.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/22/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Piplartines are alkaloid amides present in the roots and stems of different pepper species which have promising pharmacological properties including cancer prevention. Some recent studies have determined pharmacokinetic parameters of piplartine in rat blood plasma but without pointing to any molecular target or describing the physicochemical forces of the interaction. The present study investigated the interaction between piplartine and human serum albumin (HSA) the predominant protein in blood plasma. Fluorescence spectroscopy was utilized to observe the complex HSA-piplartine formation. Thermodynamic parameter analysis indicates that the process occurs spontaneously and is enthalpically driven; the affinity constant suggests that this interaction is reversible. This was reinforced by the binding density function method and by the displacement analysis that the piplartine binds on HSA at a single site, which was determined to be the IIA sub-domain. In silico analysis (molecular docking) identified the main residues involved in binding and the corresponding forces, which corroborates well with the experimental results.
Collapse
Affiliation(s)
| | - Ícaro Putinhon Caruso
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, São José do Rio Preto, SP, Brazil
| | - Daniel Pereira Bezerra
- Laboratório de Engenharia Tecidual e Imunofarmacologia (LETI), Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Salvador, BA, Brazil
| | | | - Marinônio Lopes Cornélio
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
12
|
Zazeri G, Povinelli APR, Lima MDF, Cornélio ML. Experimental Approaches and Computational Modeling of Rat Serum Albumin and Its Interaction with Piperine. Int J Mol Sci 2019; 20:ijms20122856. [PMID: 31212743 PMCID: PMC6627779 DOI: 10.3390/ijms20122856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 11/16/2022] Open
Abstract
The bioactive piperine (1-piperoyl piperidine) compound found in some pepper species (Piper nigrum linn and Piper sarmentosum Roxb) has been shown to have therapeutic properties and to be useful for well-being. The tests used to validate these properties were performed in vitro or with small rats. However, in all these assays, the molecular approach was absent. Although the first therapeutic trials relied on the use of rats, no proposal was mentioned either experimentally or computationally at the molecular level regarding the interaction between piperine and rat serum albumin (RSA). In the present study, several spectroscopic techniques were employed to characterize rat serum albumin and, aided by computational techniques, the protein modeling was proposed. From the spectroscopic results, it was possible to estimate the binding constant (3.9 × 104 M-1 at 288 K) using the Stern-Volmer model and the number of ligands (three) associated with the protein applying interaction density function model. The Gibbs free energy, an important thermodynamic parameter, was determined (-25 kJ/mol), indicating that the interaction was spontaneous. This important set of experimental results served to parameterize the computational simulations. The results of molecular docking and molecular dynamics matched appropriately made it possible to have detailed microenvironments of RSA accessed by piperine.
Collapse
Affiliation(s)
- Gabriel Zazeri
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, Rua Cristovão Colombo 2265, São José do Rio Preto CEP 15054-000, SP, Brazil.
| | - Ana Paula Ribeiro Povinelli
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, Rua Cristovão Colombo 2265, São José do Rio Preto CEP 15054-000, SP, Brazil.
| | - Marcelo de Freitas Lima
- Departamento de Química, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, Rua Cristovão Colombo 2265, São José do Rio Preto CEP 15054-000, SP, Brazil.
| | - Marinônio Lopes Cornélio
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), UNESP, Rua Cristovão Colombo 2265, São José do Rio Preto CEP 15054-000, SP, Brazil.
| |
Collapse
|
13
|
|
14
|
Pawar SK, Jaldappagari S. Interaction of repaglinide with bovine serum albumin: Spectroscopic and molecular docking approaches. J Pharm Anal 2019; 9:274-283. [PMID: 31452966 PMCID: PMC6702422 DOI: 10.1016/j.jpha.2019.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/28/2023] Open
Abstract
Repaglinide (RPG) regulates the amount of glucose by stimulating the pancreas to release insulin in the blood. In view of its biological importance, we have examined the interaction between RPG and a model protein, bovine serum albumin (BSA) employing various spectroscopic, electrochemical and molecular docking methods. Fluorescence spectra of BSA were recorded in the presence and absence of RPG in phosphate buffer of pH 7.4. Fluorescence intensity of BSA was decreased upon the addition of increased concentrations of RPG, indicating the interaction between RPG and BSA. Stern-Volmer quenching analysis results revealed that RPG quenched the intensity of BSA through dynamic quenching mechanism. This was further confirmed from the time-resolved fluorescence measurements. The binding constant as calculated from the spectroscopic and voltammetric results was observed to be in the order of 104 M−1 at 298 K, suggesting the moderate binding affinity between RPG and BSA. Competitive experimental results revealed that the primary binding site for RPG on BSA was site II. Absorption and circular dichroism studies indicated the changes in the secondary structure of BSA upon its interaction with RPG. Molecular simulation studies pointed out that RPG was bound to BSA in the hydrophobic pocket of site II. Dynamic mode of quenching mechanism was noticed in RPG-BSA interaction. RPG was bound to BSA at the Sudlow’s site II and the resultant RPG-BSA complex was mainly stabilized by hydrophobic forces. The binding constant of RPG-BSA of the order of 104 M−1 at 298 K indicated the non-covalent interactions. Secondary structural changes in BSA upon binding to RPG were evident from absorption and circular dichroism studies. The influence of β-cyclodextrin and metal ions on RPG-BSA binding affinity was examined.
Collapse
Affiliation(s)
- Suma K Pawar
- Department of Chemistry, Karnatak University, Dharwad 580 003, India
| | | |
Collapse
|
15
|
Zhang J, Chen L, Liu D, Zhu Y, Zhang Y. Data on the fluorescence quenching analysis of BSA induced by pyrene and/or 1-hydroxypyrene in binary and ternary systems. Data Brief 2018; 20:927-932. [PMID: 30225303 PMCID: PMC6138979 DOI: 10.1016/j.dib.2018.08.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/24/2018] [Indexed: 10/30/2022] Open
Abstract
This article present data related to the publication entitled "Interactions of pyrene and/or 1-hydroxypyrene with bovine serum albumin based on EEM-PARAFAC combined with molecular docking" (Zhang et al., 2018) [1]. The excitation-emission matrix (EEM) fluorescence spectral parameters of pyrene, 1-hydroxypyrene, bovine serum albumin (BSA), and their mixtures were presented in this article. Combined EEM - parallel factor analysis with fluorescence quenching analysis, some data related to the binding affinity of pyrene and/or 1-hydroxypyrene with BSA in the binary and ternary systems were obtained.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| | - Linfeng Chen
- State Key Laboratory of Marine Environmental Sciences of China (Xiamen University), College of Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Dan Liu
- State Key Laboratory of Marine Environmental Sciences of China (Xiamen University), College of Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Yaxian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Sciences of China (Xiamen University), College of Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
16
|
Zhang J, Chen L, Liu D, Zhu Y, Zhang Y. Interactions of pyrene and/or 1-hydroxypyrene with bovine serum albumin based on EEM-PARAFAC combined with molecular docking. Talanta 2018; 186:497-505. [DOI: 10.1016/j.talanta.2018.04.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 01/01/2023]
|