1
|
Aikawa S, Tanaka H, Ueda H, Maruyama M, Higaki K. Specific intermolecular interaction with sodium glycocholate generates the co-amorphous system showing higher physical stability and aqueous solubility of Y 5 receptor antagonist of neuropeptide Y, a brick dust molecule. Eur J Pharm Biopharm 2024; 202:114395. [PMID: 38971200 DOI: 10.1016/j.ejpb.2024.114395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/03/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Drugs with poor water and lipid solubility are termed "brick dust." We previously successfully developed a co-amorphous system of a novel neuropeptide Y5 receptor antagonist (AntiY5R), a brick dust molecule, using sodium taurocholate (NaTC) as a co-former. However, the maximum improvement in AntiY5R dissolution by the co-amorphous system was only approximately 10 times greater than that of the crystals. Therefore, in the current study, other bile salts, including sodium cholate (NaC), sodium chenodeoxycholate (NaCC), and sodium glycocholate (NaGC), were examined as co-formers to further improve AntiY5R dissolution. NaC, NaCC, and NaGC have glass transition temperatures above 150°C. All three co-amorphous systems prepared successfully retained the amorphous form of AntiY5R for 3 months at 40°C, but the co-amorphous system with NaGC (AntiY5R-NaGC; 1:9 molar ratio) provided the highest improvement in AntiY5R dissolution, which was approximately 50 times greater than that of the crystals. Possible intermolecular interactions via the glycine moiety of NaGC more than the other bile salts would contribute to the highest dissolution enhancement with AntiY5R-NaGC. Thus, NaGC would be a promising co-former for formulating stable co-amorphous systems to enhance the dissolution behavior of brick dust molecules.
Collapse
Affiliation(s)
- Shohei Aikawa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Formulation Research Department, Formulation R&D Laboratory, Shionogi & Co., Ltd., 1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan.
| | - Hironori Tanaka
- Formulation Research Department, Formulation R&D Laboratory, Shionogi & Co., Ltd., 1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan
| | - Hiroshi Ueda
- Bioanalytical, Analysis and Evaluation Laboratory, Shionogi & Co., Ltd., 1-1, Futabacho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
2
|
Kumar Banjare M, Barman B. Effect of biologically active amino acids based deep eutectic solvents on sodium dodecyl sulfate: A comparative spectroscopic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123700. [PMID: 38039639 DOI: 10.1016/j.saa.2023.123700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Study the effects of three novel synthesized biologically deep eutectic solvents (DESs) on the micellar characteristics of anionic sodium dodecyl sulfate (SDS). The biologically active amino acids based three DESs synthesized have composed the 2:1 M of L-Aspartic acid (DES1), L-Tyrosine (DES2), L-Glutamine (DES3) and choline chloride, furthermore which characterized by FTIR. Surface tension, viscosity, UV-visible, fluorescence, and FTIR spectroscopy are a few of the techniques used to study the interactions of SDS within 5 and 10 wt% of three novel biological DESs in aqueous solutions. The presence and absence of 5 and 10 wt% of the three novel biological DESs in an aqueous solution is used to study the critical micelle concentration (CMC) and various interfacial characteristics including CMC, the efficiency of adsorption, the maximum surface excess concentration, the packing parameter, the minimum area per molecule, and the surface pressure at CMC, is assessed by the surface tension method. The calculated fluorescence data and those obtained using surface tension and UV-visible methods correspond well. The interactions that cause changes in the structure of the surfactant self-assemblies within aqueous DESs were investigated using FTIR technique. It is significant to highlight that the presence of unique biological DESs considerably facilitates the micellization process for SDS and the extent is more affinity for DES2 compared to DES1/DES3. The colloidal properties of DES and their combinations with water are anticipated to benefit from the current findings.
Collapse
Affiliation(s)
- Manoj Kumar Banjare
- Department of Chemistry (MSS), MATS University, Pandri Campus, Raipur 492010, Chhattisgarh, India.
| | - Benvikram Barman
- Department of Chemistry (MSS), MATS University, Pandri Campus, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
3
|
Banjare MK, Banjare BS. Study of the molecular interaction of a phosphonium-based ionic liquid within myo-inositol and non-steroidal anti-inflammatory drugs. RSC Adv 2024; 14:2961-2974. [PMID: 38239439 PMCID: PMC10794903 DOI: 10.1039/d3ra07721g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024] Open
Abstract
Ionic liquids (ILs) can be used as carriers and solubilizers as well as for increasing the effectiveness of drugs. In the present investigation, the micellar properties of phosphonium-based ionic liquids (PILs) such as trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate ([P666(14)][THPP]) and the effect of carbocyclic sugar-based myo-inositol (MI) and non-steroidal anti-inflammatory drugs (NSAIDs), i.e. ibuprofen (IBU) or aspirin (ASP), on the PIL micellar system were studied using surface tension, conductivity, colorimetry, viscometry, FTIR, and dynamic light scattering (DLS) at a temperature of 299 ± 0.5 K. The critical micelle concentrations (CMCs), particle size, zeta potential, and various interfacial parameters were also included i.e., efficiency of adsorption (pC20), surface tension at CMC (γCMC), minimum surface area per molecule (Amin), surface pressure at CMC (πCMC), maximum surface excess concentration (Γmax), and various thermodynamic parameters, such as standard Gibbs free energy of adsorption , standard Gibbs free energy of micellization per alkyl tail , standard Gibbs free energy of the air-water interface (ΔG(s)min), standard Gibbs free energy of transfer , and standard Gibbs free energy of micellization . The adsorption and micellization characteristics became more spontaneous, as shown by the more negative values of and . Viscosity-based rheological properties were calculated for various PIL + MI and PIL + MI + NSAID systems. According to the DLS data, the PIL (Z = 316.4 nm) micellar system generates substantially bigger micelles in an aqueous solution of MI + ASP (Z = 801.7 nm) than in MI + IBU (Z = 674.7 nm). FTIR spectroscopy revealed the interactions of PIL with MI + ASP and MI + IBU, where it was observed that MI + IBU shows good agreement with the PIL system compared to MI + ASP. The current research will have effects on pharmaceutical sciences, molecular biology, and drug delivery.
Collapse
Affiliation(s)
- Manoj Kumar Banjare
- Department of Chemistry (MSS), MATS University, Pandri Campus Raipur-492009 Chhattisgarh India +91-9827768119
| | - Bhupendra Singh Banjare
- Department of Chemistry (MSS), MATS University, Pandri Campus Raipur-492009 Chhattisgarh India +91-9827768119
| |
Collapse
|
4
|
Kumar Banjare M, Kumar Tandon D. Study the effect of L-arginine and L-tyrosine on the surface adsorption and micellar properties of long-chain imidazolium-based ionic liquid. RESULTS IN CHEMISTRY 2024; 7:101452. [DOI: 10.1016/j.rechem.2024.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
|
5
|
Banjare BS, Banjare MK. Impact of carbocyclic sugar-based myo-inositol on conventional surfactants. J Mol Liq 2023; 384:122278. [DOI: 10.1016/j.molliq.2023.122278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
6
|
Extraction of phenolic compounds from tomato pomace using choline chloride–based deep eutectic solvents. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Banjare MK, Behera K, Banjare RK, Pandey S, Ghosh KK, Karpichev Y. Molecular interactions between novel synthesized biodegradable ionic liquids with antidepressant drug. CHEMICAL THERMODYNAMICS AND THERMAL ANALYSIS 2021; 3-4:100012. [DOI: 10.1016/j.ctta.2021.100012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
8
|
Banjare MK, Behera K, Banjare RK, Pandey S, Ghosh KK, Karpichev Y. Molecular interactions between novel synthesized biodegradable ionic liquids with antidepressant drug. CHEMICAL THERMODYNAMICS AND THERMAL ANALYSIS 2021; 3-4:100012. [DOI: https:/doi.org/10.1016/j.ctta.2021.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
9
|
Behera K, Wani FA, Bhat AR, Juneja S, Banjare MK, Pandey S, Patel R. Behavior of lysozyme within ionic liquid-in-water microemulsions. J Mol Liq 2021; 326:115350. [DOI: https:/doi.org/10.1016/j.molliq.2021.115350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
10
|
Behera K, Wani FA, Bhat AR, Juneja S, Banjare MK, Pandey S, Patel R. Behavior of lysozyme within ionic liquid-in-water microemulsions. J Mol Liq 2021; 326:115350. [DOI: 10.1016/j.molliq.2021.115350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Sharma S, Banjare MK, Singh N, Korábečný J, Kuča K, Ghosh KK. Multi-spectroscopic monitoring of molecular interactions between an amino acid-functionalized ionic liquid and potential anti-Alzheimer's drugs. RSC Adv 2020; 10:38873-38883. [PMID: 35518436 PMCID: PMC9057349 DOI: 10.1039/d0ra06323a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Inhibiting the formation of amyloid fibrils is a crucial step in the prevention of the human neurological disorder, Alzheimer's disease (AD). Ionic liquid (IL) mediated interactions are an expedient approach that exhibits inhibition effects on amyloid fibrils. In view of the beneficial role of ILs, in this work we have explored complexation of anti-Alzheimer's drugs (i.e., tacrine and PC-37) and an amino acid-functionalized IL [AIL (4-PyC8)]. Maintaining standard physiological conditions, the binding mechanism, thermo-dynamical properties and binding parameters were studied by employing UV-vis, fluorescence, FTIR, 1H NMR, COSY and NOESY spectroscopy. The present investigation uncovers the fact that the interaction of anti-Alzheimer's drugs with 4-PyC8 is mediated through H-bonding and van der Waals forces. The Benesi-Hildebrand relation was used to evaluate the binding affinity and PC-37 showed the highest binding when complexed with 4-PyC8. FTIR spectra showed absorption bands at 3527.98 cm-1 and 3527.09 cm-1 for the PC-37 + 4-PyC8 system which is quite promising compared to tacrine. 1H-NMR experiments recorded deshielding for tacrine at relatively higher concentrations than PC-37. COSY investigations suggest that anti-Alzheimer's drugs after complexation with 4-PyC8 show a 1 : 1 ratio. The cross-peaks of the NOESY spectra involve correlations between anti-Alzheimer's drugs and AIL protons, indicating complexation between them. The observed results indicate that these complexes are expected to have a possible therapeutic role in reducing/inhibiting amyloid fibrils when incorporated into drug formulations.
Collapse
Affiliation(s)
- Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 C.G. India
| | - Manoj Kumar Banjare
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 C.G. India
- MATS School of Sciences, MATS University Pagaria Complex, Pandri Raipur-492009 C.G. India
| | - Namrata Singh
- Ramrao Adik Institute of Technology, DY Patil University Nerul Navi Mumbai India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove Rokitanskeho 62 50003 Hradec Kralove Czech Republic
| | - Jan Korábečný
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Kamil Kuča
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Kralove Rokitanskeho 62 50003 Hradec Kralove Czech Republic
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 C.G. India
| |
Collapse
|
12
|
Banjare R, Banjare MK, Behera K, Pandey S, Ghosh KK. Micellization Behavior of Conventional Cationic Surfactants within Glycerol-Based Deep Eutectic Solvent. ACS OMEGA 2020; 5:19350-19362. [PMID: 32803028 PMCID: PMC7424570 DOI: 10.1021/acsomega.0c00866] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
The aggregation behavior of two cationic surfactants, i.e., cetyldimethylethanolammonium bromide (CDMEAB) and cetyltributylphosphonium bromide (CTBPB), within an aqueous deep eutectic solvent (DES) is studied. The synthesized DES is composed of 1:2 mole ratio of choline chloride and glycerol and is further characterized by Fourier transform infrared (FTIR) and 1H NMR spectroscopy techniques. The critical micellar concentration (CMC), micellar size, and intermolecular interaction in surfactants within Gly-based DES solutions are investigated by various techniques including surface tension, conductivity, fluorescence, dynamic light scattering (DLS), FTIR, 1H NMR, and two-dimensional (2D) nuclear Overhauser effect spectroscopy (NOESY). The various interfacial properties and thermodynamic parameters are determined in the presence of 5 wt % glyceline (Gly)-based DES in an aqueous solution. The CMC, aggregation number (N agg), and Stern-Volmer constant (K sv) have also been determined by a steady-state fluorescence method. DLS is used to obtain information regarding the size of the aggregates formed by the cationic surfactants in DES solutions. FTIR spectroscopy is used to study the surfactant-DES interactions that tune the micellar structure of the surfactants within the Gly-based DES solution. The functional groups involved in the interactions (H-bonding and electrostatic) are the head groups (HO-CH2-CH2-N+ ion for CDMEAB and quaternary phosphonium (P+) ion for CTBPB) of the surfactants with the -OH-containing Gly DES. The hydrophobic moieties are involved in the hydrophobic interactions. The 1H NMR data show that differences in chemical shifts can provide significant information about the interactions taking place within the system. 1H NMR and NOESY techniques are further employed to strengthen our claim on the feasible structural arrangements within the aqueous surfactant-DES self-assembled structures. It is observed that both the cationic surfactants, i.e., CDMEAB and CTBPB, form self-assembled nanostructures in the Gly-based DES solutions. The present results are expected to be useful for colloidal solutions of DES and their mixtures with water.
Collapse
Affiliation(s)
- Ramesh
Kumar Banjare
- MATS
School of Sciences, MATS University, Pagariya Complex, Pandari, Raipur, C.G. 492009, India
| | - Manoj Kumar Banjare
- MATS
School of Sciences, MATS University, Pagariya Complex, Pandari, Raipur, C.G. 492009, India
- School
of Studies in Chemistry, Pt. Ravishankar
Shukla University, Raipur, C.G. 492010, India
| | - Kamalakanta Behera
- Amity
University, Gurugram, Manesar, Panchgaon, Gurugram, Haryana 122413, India
| | - Siddharth Pandey
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Kallol K. Ghosh
- School
of Studies in Chemistry, Pt. Ravishankar
Shukla University, Raipur, C.G. 492010, India
| |
Collapse
|
13
|
Suryawanshi R, Banjare MK, Behera K, Banjare RK, Sahu R, Saha A, Pandey S, Banerjee S, Ghosh KK. Interaction of an Acid Functionalized Magnetic Ionic Liquid with Gemini Surfactants. J SOLUTION CHEM 2020; 49:715-731. [DOI: 10.1007/s10953-020-00990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/18/2020] [Indexed: 10/24/2022]
|
14
|
Banjare MK, Behera K, Banjare RK, Pandey S, Ghosh KK. Inclusion complexation of imidazolium-based ionic liquid and β-cyclodextrin: A detailed spectroscopic investigation. J Mol Liq 2020; 302:112530. [DOI: https:/doi.org/10.1016/j.molliq.2020.112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
15
|
Banjare MK, Behera K, Banjare RK, Pandey S, Ghosh KK. Inclusion complexation of imidazolium-based ionic liquid and β-cyclodextrin: A detailed spectroscopic investigation. J Mol Liq 2020; 302:112530. [DOI: 10.1016/j.molliq.2020.112530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Banjare RK, Banjare MK, Panda S. Effect of Acetonitrile on the Colloidal Behavior of Conventional Cationic Surfactants: A Combined Conductivity, Surface Tension, Fluorescence and FTIR Study. J SOLUTION CHEM 2020; 49:34-51. [DOI: 10.1007/s10953-019-00937-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 10/12/2019] [Indexed: 01/03/2023]
|
17
|
Sharma S, Banjare MK, Singh N, Korábečný J, Kuča K, Ghosh KK. Multi-spectroscopic monitoring of molecular interactions between an amino acid-functionalized ionic liquid and potential anti-Alzheimer's drugs. RSC Adv 2020; 10:38873-38883. [DOI: https:/doi.org/10.1039/d0ra06323a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023] Open
Abstract
Ionic liquids mediated interactions are an expedient approach that exhibit inhibition effect on amyloid fibrils which is beneficial for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Srishti Sharma
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| | - Manoj Kumar Banjare
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
- MATS School of Sciences
| | - Namrata Singh
- Ramrao Adik Institute of Technology
- DY Patil University
- Navi Mumbai
- India
- Department of Chemistry
| | - Jan Korábečný
- Biomedical Research Center
- University Hospital Hradec Kralove
- 500 05 Hradec Kralove
- Czech Republic
- Department of Toxicology and Military Pharmacy
| | - Kamil Kuča
- Biomedical Research Center
- University Hospital Hradec Kralove
- 500 05 Hradec Kralove
- Czech Republic
- Department of Chemistry
| | - Kallol K. Ghosh
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| |
Collapse
|
18
|
Banjare MK, Behera K, Banjare RK, Sahu R, Sharma S, Pandey S, Satnami ML, Ghosh KK. Interaction of Ionic Liquid with Silver Nanoparticles: Potential Application in Induced Structural Changes of Globular Proteins. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2019; 7:11088-11100. [DOI: 10.1021/acssuschemeng.8b06598] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Affiliation(s)
- Manoj Kumar Banjare
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009, India
| | - Kamalakanta Behera
- Centre for Interdisciplinary
Research in Basic Sciences, JMI, Jamia Nagar, New Delhi 110 025, India
| | - Ramesh Kumar Banjare
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
- School of Biological and Chemical Science, MATS University, Raipur, Chhattisgarh 492001, India
| | - Reshma Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
| | - Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
| | - Siddharth Pandey
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India
| | - Manmohan L. Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
| | - Kallol K. Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
| |
Collapse
|
19
|
Egorova KS, Ananikov VP. Fundamental importance of ionic interactions in the liquid phase: A review of recent studies of ionic liquids in biomedical and pharmaceutical applications. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Banjare MK, Behera K, Satnami ML, Pandey S, Ghosh KK. Host–guest complexation of ionic liquid with α- and β-cyclodextrins: a comparative study by 1H-NMR, 13C-NMR and COSY. NEW J CHEM 2018; 42:14542-14550. [DOI: 10.1039/c8nj01840e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The inclusion complexation of 1-butyl-3-methylimidazolium octylsulphate [Bmim][OS] with host α- and β-cyclodextrins (CDs) has been explored by 1H NMR, 13C NMR and COSY methods. The insertion of a guest molecule into the cavity of CD is clearly reflected by changes in 1H-NMR and 13C-NMR chemical shift values and COSY NMR suggest that both H-bonding and electrostatic interactions involved to the complexation.
Collapse
Affiliation(s)
- Manoj Kumar Banjare
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur (C.G.)
- India
| | | | - Manmohan L. Satnami
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur (C.G.)
- India
| | - Siddharth Pandey
- Department of Chemistry
- Indian Institute of Technology Delhi
- India
| | - Kallol K. Ghosh
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur (C.G.)
- India
| |
Collapse
|