1
|
Volmer J, Cerajewski U, Alfes M, Bender J, Abert J, Schmidt C, Ott M, Hinderberger D. Aqueous Ionic Liquid Mixtures as Minimal Models of Lipid Bilayer Membranes. ACS Biomater Sci Eng 2024; 10:4802-4811. [PMID: 39066733 PMCID: PMC11322907 DOI: 10.1021/acsbiomaterials.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
We introduce aqueous ionic liquid (IL) mixtures, specifically mixtures of 1-butyl-3-imidazoliumtetrafluoroborate (BMImBF4), with water as a minimal model of lipid bilayer membranes. Imidazolium-based ILs are known to form clustered nanoscale structures in which local inhomogeneities, micellar or lamellar structures, are formed to shield hydrophobic parts of the cation from the polar cosolvent (water). To investigate these nanostructures, dynamic light scattering (DLS) on samples with different mixing ratios of water and BMImBF4 was performed. At mixing ratios of 50% and 45% (v/v), small and homogeneous nanostructures can indeed be detected. To test whether, in particular, these stable nanostructures in aqueous mixtures may mimic the effects of phospholipid bilayer membranes, we further investigated their interaction with myelin basic protein (MBP), a peripheral, intrinsically disordered membrane protein of the myelin sheath. Using dynamic light scattering (DLS), continuous wave (CW) and pulse electron paramagnetic resonance (EPR), and small-angle X-ray scattering (SAXS) on recombinantly produced, "healthy" charge variants rmC1WT and double cysteine variant C1S17CH85C, we find that the size and the shape of the determined nanostructures in an optimum mixture offer model membranes in which the protein exhibits native behavior. SAXS measurements illuminate the size and shape of the nanostructures and indicate IL-rich "beads" clipped together by functional MBP, one of the in vivo roles of the protein in the myelin sheath. All the gathered data combined indicate that the 50% and 45% aqueous IL mixtures can be described as offering minimal models of a lipid mono- or bilayer that allow native processing and potential study of at least peripheral membrane proteins like MBP.
Collapse
Affiliation(s)
- Jonas Volmer
- Martin
Luther University Halle-Wittenberg, Institute of Chemistry, Physical
Chemistry − Complex Self-Organizing Systems, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Ulrike Cerajewski
- Martin
Luther University Halle-Wittenberg, Institute of Chemistry, Physical
Chemistry − Complex Self-Organizing Systems, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Marie Alfes
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Julian Bender
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Josefin Abert
- Martin
Luther University Halle-Wittenberg, Institute of Chemistry, Physical
Chemistry − Complex Self-Organizing Systems, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Carla Schmidt
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
- Department
of Chemistry − Biochemistry, Johannes Gutenberg University
Mainz, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Maria Ott
- Martin
Luther University Halle-Wittenberg, Institute of Biochemistry and
Biotechnology, Protein Biochemistry, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Dariush Hinderberger
- Martin
Luther University Halle-Wittenberg, Institute of Chemistry, Physical
Chemistry − Complex Self-Organizing Systems, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| |
Collapse
|
2
|
Sardiña-Peña AJ, Ballinas-Casarrubias L, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Flores-Holguín NR, Iglesias-Figueroa BF, Rascón-Cruz Q. Thermostability improvement of sucrose isomerase PalI NX-5: a comprehensive strategy. Biotechnol Lett 2023:10.1007/s10529-023-03388-6. [PMID: 37199887 DOI: 10.1007/s10529-023-03388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE To increase the thermal stability of sucrose isomerase from Erwinia rhapontici NX-5, we designed a comprehensive strategy that combines different thermostabilizing elements. RESULTS We identified 19 high B value amino acid residues for site-directed mutagenesis. An in silico evaluation of the influence of post-translational modifications on the thermostability was also carried out. The sucrose isomerase variants were expressed in Pichia pastoris X33. Thus, for the first time, we report the expression and characterization of glycosylated sucrose isomerases. The designed mutants K174Q, L202E and K174Q/L202E, showed an increase in their optimal temperature of 5 °C, while their half-lives increased 2.21, 1.73 and 2.89 times, respectively. The mutants showed an increase in activity of 20.3% up to 25.3%. The Km values for the K174Q, L202E, and K174Q/L202E mutants decreased by 5.1%, 7.9%, and 9.4%, respectively; furthermore, the catalytic efficiency increased by up to 16%. CONCLUSIONS With the comprehensive strategy followed, we successfully obtain engineered mutants more suitable for industrial applications than their counterparts: native (this research) and wild-type from E. rhapontici NX-5, without compromising the catalytic activity of the molecule.
Collapse
Affiliation(s)
- A J Sardiña-Peña
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México
| | - L Ballinas-Casarrubias
- Laboratorio de Química Analítica III, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México
| | - T S Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México
| | - E A Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México
| | - N R Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - B F Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México
| | - Q Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, C. P. 31125, Chihuahua, México.
| |
Collapse
|
3
|
Mixing behavior of 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide and 1-Ethyl-3-methylimidazolium tetrafluoroborate binary ionic liquids mixtures. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
4
|
Zhao R, Xu X, Zhou Y, Wang Z, Zhou Y. Study on the structural characteristics and interaction mechanisms of ionic liquid mixtures with a common imidazolium cation. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Tang H, Cai J, Zhu CY, Chen GJ, Wang XH, Sun CY. Review on the clustering behavior in aqueous solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Bottari C, Almásy L, Rossi B, Bracco B, Paolantoni M, Mele A. Interfacial Water and Microheterogeneity in Aqueous Solutions of Ionic Liquids. J Phys Chem B 2022; 126:4299-4308. [PMID: 35649236 PMCID: PMC9207890 DOI: 10.1021/acs.jpcb.1c10961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/08/2022] [Indexed: 11/28/2022]
Abstract
In this work, aqueous solutions of two prototypical ionic liquids (ILs), [BMIM][BF4] and [BMIM][TfO], were investigated by UV Raman spectroscopy and small-angle neutron scattering (SANS) in the water-rich domain, where strong heterogeneities at mesoscopic length scales (microheterogeneity) were expected. Analyzing Raman data by a differential method, the solute-correlated (SC) spectrum was extracted from the OH stretching profiles, emphasizing specific hydration features of the anions. SC-UV Raman spectra pointed out the molecular structuring of the interfacial water in these microheterogeneous IL/water mixtures, in which IL aggregates coexist with bulk water domains. The organization of the interfacial water differs for the [BMIM][BF4] and [BMIM][TfO] solutions, being affected by specific anion-water interactions. In particular, in the case of [BMIM][BF4], which forms weaker H-bonds with water, the aggregation properties clearly depend on concentration, as reflected by local changes in the interfacial water. On the other hand, stronger water-anion hydrogen bonds and more persistent hydration layers were observed for [BMIM][TfO], which likely prevent changes in IL aggregates. The modeling of SANS profiles, extended to [BPy][BF4] and [BPy][TfO], evidences the occurrence of significant concentration fluctuations for all of the systems: this appears as a rather general phenomenon that can be ascribed to the presence of IL aggregation, mainly induced by (cation-driven) hydrophobic interactions. Nevertheless, larger concentration fluctuations were observed for [BMIM][BF4], suggesting that anion-water interactions are relevant in modulating the microheterogeneity of the mixture.
Collapse
Affiliation(s)
- Cettina Bottari
- Elettra
Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | - László Almásy
- Institute
for Energy Security and Environmental Safety, Centre for Energy Research, Konkoly-Thege Miklós út 29−33, 1121 Budapest, Hungary
| | - Barbara Rossi
- Elettra
Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | - Brenda Bracco
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Marco Paolantoni
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Andrea Mele
- Department
of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, 20133 Milano, Italy
| |
Collapse
|
7
|
Zheng YZ, Chen H, Zhou Y, Zhang YC. Combination of FTIR and DFT to study the structure and hydrogen-bond properties of alkylammonium-based ILs and DMSO mixtures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Chen H, Wang Z, Zhao P, Xu X, Gong S, Yu Z, Zhou Y. Comparative study of the hydrogen bonding properties between bis(fluorosulfonyl)imide/bis(trifluoromethyl)sulfonylimide-based ether-functionalized ionic liquids and methanol. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Zheng YZ, Zhou Y, Deng G, Guo R, Chen DF. Structures and non-covalent interaction behaviours of binary systems containing the ionic liquid 1-(2'-hydroxylethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and chloroform. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118843. [PMID: 32896709 DOI: 10.1016/j.saa.2020.118843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Mixtures of ionic liquids (ILs) and molecular solvents can overcome the drawbacks (high viscosity, high polarity, and high cost) of pure ILs and extend their practical use. The structural and interaction properties of ILs form the bases for understanding their properties. In this work, the structural properties of the mixtures of an IL, 1-(2'-hydroxylethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2OHMIM][Tf2N]), with chloroform, a molecular solvent of weak polarity, in various concentrations were analysed using Fourier transform infrared spectroscopy and density functional theory calculations. Excess spectra were used to analyse the infrared spectra. The IL forms a stable ion cluster-CDCl3 complex with CDCl3 in the concentration range investigated. In the ion cluster-CDCl3 complex, the hydrogen atom of CDCl3 forms hydrogen-bonds with the fluorine atoms of the anion. In addition, the chlorine atom of CDCl3 forms a halogen-bond with the oxygen atom of the anion. All the hydrogen and halogen-bonds identified between the [C2OHMIM][Tf2N] ion cluster and CDCl3 exhibit low strength, closed shells, and electrostatically dominant interactions.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yu Zhou
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Da-Fu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
10
|
Zheng YZ, Zhou Y, He HY, Guo R, Chen DF. Nitrile group as IR probe to detect the structure and hydrogen-bond properties of piperidinium/pyrrolidinium based ionic liquids and acetonitrile mixtures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Chen H, Wang Z, Xu X, Gong S, Yu Z, Zhou Y. The microscopic structure of 1-Methoxyethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EOMIMTFSI) during dilution with polar solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Kalhor P, Yu ZW. Structural and hydrogen-bonding properties of neat t-BuNH2 and its binary mixtures with CCl4, CHCl3 and DMSO. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Microscopic properties of two 1-(2′-hydroxylethyl)-3-methylimidazolium-based ionic liquids and methanol mixtures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
A comparison of ether- and alkyl-imidazolium-based ionic liquids diluted with CH3CN: A combined FTIR and DFT study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Kalhor P, Zheng YZ, Ashraf H, Cao B, Yu ZW. Influence of Hydration on the Structure and Interactions of Ethaline Deep-Eutectic Solvent: A Spectroscopic and Computational Study. Chemphyschem 2020; 21:995-1005. [PMID: 32232896 DOI: 10.1002/cphc.202000165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/29/2020] [Indexed: 01/31/2023]
Abstract
Deep-eutectic solvents (DESs) are regarded as alternative green solvents to ionic liquids. In this work we report the structural properties and hydrogen bonding (H-bonding) interactions of an aqueous DES system. The used DES, ethaline (ETH), is composed of choline chloride and ethylene glycol (EG) in 1 : 2 molar ratio. The investigations were carried out by FTIR spectroscopy combined with quantum chemical calculations. Excess spectroscopy and two-dimensional correlation spectroscopy (2D-COS) were used to explore the data in detail. The results showed that, upon mixing, ETH transforms to EG dimers and trimers and D2 O clusters transform to various ETH-D2 O complexes. Theoretical calculations show that water molecules insert between the anion and cation of ETH, break the strong doubly ionic Cl-… H-OCh+ H-bond, share charges of the ions and form H-bond with them, thus modulate the interaction properties of ETH. This study deepens our molecular-level understanding of the system and would shed light on its applications.
Collapse
Affiliation(s)
- Payam Kalhor
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yan-Zhen Zheng
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hamad Ashraf
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bobo Cao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhi-Wu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Erkabaev AM, Yaroslavtseva TV, Reznitskikh OG, Bushkova OV. Solvation of anions in acetonitrile solutions: FTIR and quantum chemical study for Br -, ClO 4-, AsF 6-, and CF 3SO 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117873. [PMID: 31813727 DOI: 10.1016/j.saa.2019.117873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Anion solvation in acetonitrile solutions was comparatively studied using FTIR spectroscopy and quantum chemical calculations at the RTF + MP2/6-311G** level of theory with solvation model density (SMD) corrections. Infrared spectra for all stable anionic complexes X-(CH3CN)n (where X- = Br- (monatomic halide), ClO4- (polyatomic tetrahedral), AsF6- (polyatomic octahedral), CF3SO3- (polyatomic ethane-like) and n = 1-8) were calculated and subsequently used in the analysis of the FTIR spectra of (Bu4N)X and LiX acetonitrile solutions across a wide range of concentrations. Spectroscopic manifestations of solvation were established for all X- examined. The results for all four anions under investigation were generalized to reveal the regularities of anion solvation by acetonitrile.
Collapse
Affiliation(s)
- Alexander M Erkabaev
- Institute of Solid State Chemistry UB RAS, Pervomaiskaya st., 91, Ekaterinburg 620990, Russia
| | - Tatyana V Yaroslavtseva
- Institute of Solid State Chemistry UB RAS, Pervomaiskaya st., 91, Ekaterinburg 620990, Russia
| | - Olga G Reznitskikh
- Institute of Solid State Chemistry UB RAS, Pervomaiskaya st., 91, Ekaterinburg 620990, Russia
| | - Olga V Bushkova
- Institute of Solid State Chemistry UB RAS, Pervomaiskaya st., 91, Ekaterinburg 620990, Russia; NTI Competence Center for New and Mobile Power Sources Technologies of the Institute of Problems of Chemical Physics RAS, Academician Semenov av. 1, Chernogolovka, Moscow region 142432, Russia.
| |
Collapse
|
17
|
Zhang Y, Wu Z, Wang Y, He H, Yu Z. Excess spectroscopy and its applications in the study of solution chemistry. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2020-0107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Characterization of structural heterogeneity of liquid solutions and the pursuit of its nature have been challenging tasks to solution chemists. In the last decade, an emerging method called excess spectroscopy has found applications in this area. The method, combining the merits of molecular spectroscopy and excess thermodynamic functions, shows the ability to enhance the apparent resolution of spectra, provides abundant information concerning solution structures and intermolecular interactions. In this review, the thinking and mathematics of the method, as well as its developments, are presented first. Then, research progress related to the exploration of the method is thoroughly reviewed. The materials are classified into two parts, small-molecular solutions and ionic liquid solutions. Finally, potential challenges and the perspective for further development of the method are discussed.
Collapse
Affiliation(s)
- Yaqin Zhang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Zhiwei Wu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Yaqian Wang
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Hongyan He
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Zhiwu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| |
Collapse
|
18
|
Zhou Y, Xu X, Wang Z, Gong S, Chen H, Yu Z, Kiefer J. The effect of introducing an ether group into an imidazolium-based ionic liquid in binary mixtures with DMSO. Phys Chem Chem Phys 2020; 22:15734-15742. [DOI: 10.1039/d0cp01568g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Combined DFT and FTIR investigations reveal interesting hydrogen bonding interactions between dimethyl sulfoxide and an ether-functionalized imidazolium-based ionic liquid.
Collapse
Affiliation(s)
- Yu Zhou
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Xianzhen Xu
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Zonghua Wang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Shida Gong
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hong Chen
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Zhiwu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology
- Tsinghua University
- Beijing 100084
- China
| | | |
Collapse
|
19
|
Zheng YZ, Chen H, Zhou Y, Geng D, He HY, Wu LM. The structure and hydrogen-bond properties of N-alkyl- N-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide and DMSO mixtures. Phys Chem Chem Phys 2020; 22:28021-28031. [PMID: 33305305 DOI: 10.1039/d0cp03640d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mixing ionic liquids (ILs) with molecular solvents can extend the practical applications of ILs and overcome the drawbacks of neat ILs. Knowledge on the structure and hydrogen-bond interaction properties of IL-molecular solvent mixtures is essential for chemical applications. In this work, the structure and hydrogen-bond features of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide ([CnMPyr][Tf2N], n = 3, 4, 6 and 8) and DMSO mixtures were studied using Fourier transform infrared spectroscopy (FTIR) and density functional theory (DFT) calculations. Excess infrared absorption spectroscopy and two-dimensional correlation spectroscopy (2D-COS) were employed to extract structural information on the mixtures from the C-D systematic stretching vibrational (νs(C-D)) region of the methyl groups in DMSO-d6. It was found that the mixing process of [CnMPyr][Tf2N] and DMSO is non-ideal and interaction complexes form between [CnMPyr][Tf2N] and DMSO-d6. They are ion cluster-DMSO-d6 complexes and ion pair-DMSO-d6 complexes. In the mixing processes, the species present in pure DMSO gradually decrease from DMSO dimer to DMSO monomer with an increase in ILs. Besides, the ion cluster-DMSO complexes gradually increase, while the ion pair-DMSO complexes decrease due to the strong electrostatic interaction between the cation and anion. In the ion cluster-DMSO complexes and ion pair-DMSO complexes, the ring hydrogen atoms of the methylene group directly attached to the nitrogen atom are the preferred interaction sites of the [CnMPyr]+ cations. All the hydrogen bonds in the identified complexes are closed-shell, electrostatically dominant and weak.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | | | | | | | | | | |
Collapse
|