1
|
Wang XY, Wang LD, Liu QH, Sun F, Yang L, Ye F. A naked-eye visible aluminium (III)-based complex fluorescence sensor for sensitive detection of mesotrione. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123706. [PMID: 38043295 DOI: 10.1016/j.saa.2023.123706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Mesotrione, which is a kind of herbicide to control broad-leaved weeds, has been increasingly used due to its excellent selectivity, rapid process and low toxicity. However, the excessive application of mesotrione have led to widespread contamination. Herein, a turn-on competitive coordination-based fluorescent probe, 2-hydroxy-1-(9-purin)-methylidenehydrazinenaphthalene (HPM), has been successfully synthesized. HPM could effectively detect Al3+ in CH3OH/HEPES (1/9, v/v) with low limit of detection (LOD) being 0.2 µM via coordination. HPM also exhibited excellent imaging capabilities for Al3+ in living cells with low cytotoxicity. On the basis of the competitive coordination of HPM with Al3+, the [HPM-Al3+] complex could also serve as a potential fluorescence sensor for detecting mesotrione with the LOD of 0.2 µM. Furthermore, [HPM-Al3+] complex was applied for the detection of mesotrione in real samples and test paper. Finally, the mechanism of [HPM-Al3+] for sensing mesotrione was investigated deeply as well. This work designed a new convenient method for on-site detection of mesotrione without the large-scale equipment or complicated pre-treatment.
Collapse
Affiliation(s)
- Xue-Ying Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Lu-Di Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qiu-Huan Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Fang Sun
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Liu Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
2
|
Liu Y, Zhang Y, Sheng M, Kang Y, Jia B, Li W, Fu Y. A novel pyrene-based fluorescent probe for Al 3+ detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122085. [PMID: 36379088 DOI: 10.1016/j.saa.2022.122085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/15/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Based on the classical Schiff base reaction, fluorescent probe dimethyl 5-((pyren-1-ylmethylene)amino)isophthalate (PAI) is designed and synthesized through introducing Schiff base structure to pyrene unit for structural modification. The structure of the synthesized probe PAI is determined and characterized by FT-IR, 1H NMR, 13C NMR and HRMS. PAI is a type of "turn-on" probe which can specifically recognize Al3+ ion with high selectivity. The limit of detection is calculated to be 3.07 × 10-8 M, which proves the probe's high sensitivity and is lower than that of many efficient reported probes. The probe PAI is intrinsically non-fluorescent due to the photoinduced electron transfer (PET) process. However, the addition of Al3+ ion leads to the breakage of the carbon-nitrogen double bond of Schiff base in PAI resulting in the product without PET property, which shows a typical localized state with enhanced fluorescence and blue color. In addition, PAI can recognize Al3+ ion through test papers, which is in favor of the future research regarding to Al3+ ion sensing.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yeqi Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Ming Sheng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yihan Kang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Binbin Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Wenbo Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
3
|
Xiang H, Wang T, Tang S, Wang Y, Xiao N. A novel hydrazone-based fluorescent "off-on-off" probe for relay sensing of Ga 3+ and PPi ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120510. [PMID: 34689093 DOI: 10.1016/j.saa.2021.120510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
A novel hydrazone-based fluorescent probe (E)-3-((2-(benzo[d]thiazol-2-yl)hydrazono)methyl)-4H-chromen-4-one (BTC) has been rationally designed and synthesized. BTC can subsequently detect Ga3+ and PPi ions through the absorption and emission off-on-off response with high specificity. Importantly, fluorescent probe BTC can well discriminate Ga3+ from Al3+ and In3+. The association constant (K) was calculated as 2.06 × 104M-1, and the limit of detection (LOD) was calculated as 4.88 × 10-2μM. Competitive binding studies also illustrated good results of the probe BTC towards Ga3+. Job's plot and HRMS results substantiated the 1:1 stoichiometry between BTC and Ga3+ ion. The interaction binding mode of BTC with Ga3+ was proposed by HRMS, 1H NMR spectral titration, UV-vis absorption and fluorescence spectral measurements. The combination of the restraint of the photo-induced electron transfer (PET) process and the chelation enhanced fluorescence (CHEF) process is responsible for the fluorescence enhancement of this probe. The in situ chelated BTC-Ga3+ could further monitor pyrophosphate ion (PPi) by demetallization process with quenching fluorescence emission. Additionally, the BTC and BTC-Ga3+ showed good cell permeability and could detect Ga3+ and PPi ions in onioninner epidermal cells, respectively.
Collapse
Affiliation(s)
- Hanyue Xiang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Tianran Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Sixian Tang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yujie Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Nao Xiao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
4
|
Zhao YT, Chen XX, Jiang WL, Li Y, Fei J, Li CY. Near-Infrared Fluorescence MOF Nanoprobe for Adenosine Triphosphate-Guided Imaging in Colitis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47840-47847. [PMID: 32981314 DOI: 10.1021/acsami.0c13003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adenosine triphosphate (ATP) is mainly produced in mitochondria and plays an important role in lots of pathological processes such as colitis. Unfortunately, to date, few suitable fluorescence probes have been developed for monitoring the ATP level in colitis. Herein, a fluorescence nanoprobe named NIR@ZIF-90 is proposed and prepared by encapsulating a rhodamine-based near-infrared (NIR) dye into zeolitic imidazolate frameworks (ZIF-90). The nanoprobe is nonfluorescent because the emission of NIR is suppressed by the encapsulation, while in the presence of ATP, the framework of ZIF-90 is dissembled to release NIR and thus NIR fluorescence at 750 nm is observed. The nanoprobe shows high sensitivity to ATP with a 72-fold increase and excellent selectivity to ATP over other nucleotides. Moreover, with low cytotoxicity and good mitochondria-targeted ability, NIR@ZIF-90 is used to image ATP in colorectal cancer cells (HCT116). In addition, due to the NIR emission, the nanoprobe is further employed to successfully monitor the ATP level in a colitis mouse model. To the best of our knowledge, the nanoprobe is the first example to study colitis in vivo with the guidance of ATP, which will provide an efficient tool for understanding colitis.
Collapse
Affiliation(s)
- Yi-Ting Zhao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Xi-Xi Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. China
| | - Junjie Fei
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
5
|
Aydin D, Karakilic E, Karakurt S, Baran A. Thiazolidine based fluorescent chemosensors for aluminum ions and their applications in biological imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118431. [PMID: 32413718 DOI: 10.1016/j.saa.2020.118431] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Utilization of fluorescent techniques in detection of various metal ions actively pursued allow ultrasensitive and selective detections of metal ions and prevent the adverse effect of cations such as aluminum (III) ions. In this study, two novel fluorescent chemosensors containing thiazole derivatives, ((E)-2-(4-hydroxy-3-(((2-hydroxyphenyl)imino)methyl)phenyl)-3-phenyl thiazolidin-4-one) AM1 and (2,3-bis(4-hydroxy-3-((E)-((2-hydroxyphenyl)imino) methyl) phenyl) thiazolidin-4-one) AM2, have been fabricated. The probes AM1 and AM2 were prepared using the condensation reaction between 2-hydroxy-5-(4-oxo-3-phenyl thiazolidin-2-yl) benzaldehyde and 2-aminophenol for the probe AM1 and 5,5'-(4-oxothiazolidine-2,3-diyl)bis(2-hydroxy benzaldehyde) and 2-aminophenol for the probe AM2. Afterwards, they were analyzed by various types of NMR and FT-IR spectroscopy, ESI-MS spectra, and elemental anayzer. As a second step, each fabricated chemosensor was able to use turn on fluorescence sensing for detecting of Al3+ ions in ACN/H2O (v/v = 50/50, 10.0 μM, pH = 7.0) solution. Clear complexes formed between the probe AM1 and Al3+ ions and also the probe AM2 and Al3+ ions was determined by not only 1H NMR titration study but also calculated by using the Job's plot. The limit of detection (LOD) value was found to be 0.11 μM (AM1) and 4.4 μM (AM2) for Al3+ ions. Likewise, cell imaging and in vitro cytotoxicity experiments of Al3+ ions in Human epithelium Lovo cells exhibited that prepared chemosensors had low cytotoxicity and blue fluorescence when they treated with of Al3+ ions in the cellular system.
Collapse
Affiliation(s)
- Duygu Aydin
- Karamanoglu Mehmetbey University, Department of Chemistry, Karaman 70100, Turkey.
| | - Emel Karakilic
- Sakarya University, Department of Chemistry, Sakarya 54187, Turkey
| | - Serdar Karakurt
- Selcuk University, Department of Biochemistry, Konya 42031, Turkey
| | - Arif Baran
- Sakarya University, Department of Chemistry, Sakarya 54187, Turkey.
| |
Collapse
|