1
|
Kadadou D, Tizani L, Alsafar H, Hasan SW. Analytical methods for determining environmental contaminants of concern in water and wastewater. MethodsX 2024; 12:102582. [PMID: 38357632 PMCID: PMC10864661 DOI: 10.1016/j.mex.2024.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Control and prevention of environmental pollution have emerged as paramount global concerns. Anthropogenic activities, such as industrial discharges, agricultural runoff, and improper waste disposal, introduce a wide range of contaminants into various ecosystems. These pollutants encompass organic and inorganic compounds, particulates, microorganisms, and disinfection by-products, posing severe threats to human health, ecosystems, and the environment. Effective monitoring methods are indispensable for assessing environmental quality, identifying pollution sources, and implementing remedial measures. This paper suggests that the development and utilization of highly advanced analytical tools are both essential for the analysis of contaminants in water samples, presenting a foundational hypothesis for the review. This paper comprehensively reviews the development and utilization of highly advanced analytical tools which is mandatory for the analysis of contaminants in water samples. Depending on the specific pollutants being studied, the choice of analytical methods widely varies. It also reveals insights into the diverse applications and effectiveness of these methods in assessing water quality and contaminant levels. By emphasizing the critical role of the reviewed monitoring methods, this review seeks to deepen the understanding of pollution challenges and inspire innovative monitoring solutions that contribute to a cleaner and more sustainable global environment.•Urgent global concerns: control and prevention of pollution from diverse sources.•Varied contaminants, diverse methods: comprehensive review of analytical tools.•Inspiring a sustainable future: innovative monitoring for a cleaner environment.
Collapse
Affiliation(s)
- Dana Kadadou
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Lina Tizani
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Emirates Bio-research Center, Ministry of Interior, Abu Dhabi, United Arab Emirates
| | - Shadi W. Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Yin L, You T, Arslan M, El-Seedi HR, Guo Z, Zou X, Cai J. Dual-layers Raman reporter-tagged Au@Ag combined with core-satellite assemblies for SERS detection of Zearalenone. Food Chem 2023; 429:136834. [PMID: 37453336 DOI: 10.1016/j.foodchem.2023.136834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/18/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Zearalenone (ZEN) is a prevalent mycotoxin identified in corn. A SERS-based immunosensor by constructing core-satellite assemblies was developed for ZEN detection. ZEN monoclonal antibody modified gold nanostars (AuNSs) were fabricated as the capture probe (core). The Raman signal probes (satellites) utilized ZEN antigen linked to the core-shell structures loaded with two layers of Raman reporter molecules (AuMBA@AgMBANPs). The coupling between AuNSs and AuMBA@AgMBANPs can produce a poweful electromagnetic field, thus considerably amplifying the Raman signal. The detection range of ZEN for corn samples under the optimal conditions was 5 ∼ 400 μg/kg with a LOD of 3 μg/kg, which completely satisfying the requirement of maximum residual level (60 μg/kg). Moreover, the proposed SERS method was consistent with the HPLC-FLD method for the detection of ZEN in naturally contaminated corn samples (90.58% ∼ 105.29%). Conclusively, fabricated immunosensor with exceptional sensitivity and specificity broaden the application of SERS in mycotoxin detection.
Collapse
Affiliation(s)
- Limei Yin
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Xue G, Wu M, Liu T, Fang X, Yin J, Lai W, Peng J. A multiple lateral flow immunoassay based on AuNP for the detection of 5 chemical contaminants in milk. J Dairy Sci 2023; 106:3856-3867. [PMID: 37164860 DOI: 10.3168/jds.2022-23008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 05/12/2023]
Abstract
Melamine (MEL), enrofloxacin (ENR), sulfamethazine (SMZ), tetracycline (TC), and aflatoxin M1 (AFM1) are the main chemical contaminants in milk. It is necessary to detect these miscellaneous chemical contaminants in milk synchronously to ensure the safety of the milk. In this study, a multiple lateral flow immunoassay (LFIA) was developed for the detection of MEL, ENR, SMZ, TC, and AFM1 in milk. Under optimal experimental conditions, the cutoff values were 25 ng/mL for MEL, 1 ng/mL for ENR, 2.5 ng/mL for SMZ, 2.5 ng/mL for TC, and 0.25 ng/mL for AFM1 in milk samples. The limits of detection of LFIA were 0.173 ng/mL for MEL, 0.078 ng/mL for ENR, 0.059 ng/mL for SMZ, 0.082 ng/mL for TC, and 0.0064 ng/mL for AFM1. The recovery rates of LFIA in milk were 83.2-104.4% for MEL, 76.5-127.3% for ENR, 96.8-113.5% for SMZ, 107.1-166.6% for TC, and 93.5-130.3% for AFM1. The coefficients of variation were all less than 15%. As a whole, the developed multiple lateral flow immunoassay showed potential as a highly reliable and excellent tool for the rapid and sensitive screening of MEL, ENR, SMZ, TC, and AFM1 in milk.
Collapse
Affiliation(s)
- Guangjian Xue
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mengyun Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Tingting Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xuechen Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiaqi Yin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Peng
- School of Food Science, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
4
|
Liang N, Hu X, Zhang X, Li W, Guo Z, Huang X, Li Z, Zhang R, Shen T, Zou X, Shi J. Ratiometric Sensing for Ultratrace Tetracycline Using Electrochemically Active Metal-Organic Frameworks as Response Signals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7584-7592. [PMID: 37139942 DOI: 10.1021/acs.jafc.3c00846] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A novel ratiometric sensor using an electrochemically active metal-organic framework of Mo@MOF-808 and NH2-UiO-66 as response signals was developed to detect tetracycline (TET) in ultratrace quantities. To achieve the dual-response strategy, Mo@MOF-808, with a reduction peak at -1.06 V, and NH2-UiO-66, with an oxidation peak at 0.724 V, were used as signal probes directly. Concretely, Mo@MOF-808, single-stranded DNA (ssDNA), and complex system (Apt@NH2-UiO-66) of aptamer (Apt) and NH2-UiO-66 were sequentially immobilized on the electrode. With the addition of TET, Apt was hybridized with TET and Apt@NH2-UiO-66 was detached from the electrode, resulting in an increase in the current at -1.06 V and a decrease in the current at 0.724 V. Through this strategy, the sensor achieved a wide linear range (0.1-10000 nM) and a low limit of detection (0.009792 nM) for TET. Moreover, the ratiometric sensor exhibited better sensitivity, reproducibility, and stability than a single-signal sensor. Furthermore, the constructed sensor was successfully applied to detect TET in milk samples, suggesting excellent application prospects.
Collapse
Affiliation(s)
- Nini Liang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuetao Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ziang Guo
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Roujia Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Instrumental Analysis Center, Jiangsu University, Zhenjiang 212013, China
| | - Tingting Shen
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- China Light Industry Engineering Technology Research Center of Central Kitchen Intelligent Equipment, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
- China Light Industry Engineering Technology Research Center of Central Kitchen Intelligent Equipment, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| |
Collapse
|
5
|
Li H, Geng W, Haruna SA, Hassan MM, Chen Q. A target-responsive release SERS sensor for sensitive detection of tetracycline using aptamer-gated HP-UiO-66-NH2 nanochannel strategy. Anal Chim Acta 2022; 1220:339999. [DOI: 10.1016/j.aca.2022.339999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022]
|
6
|
Wang L, Wang Y, Li H, Zhu Y, Liu R. Occurrence, source apportionment and source-specific risk assessment of antibiotics in a typical tributary of the Yellow River basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114382. [PMID: 34973559 DOI: 10.1016/j.jenvman.2021.114382] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The spatial distributions, sources, and source-specific risk apportionments of 26 antibiotics (5 categories) in the Fenhe River basin were determined based on sample data. The results showed that antibiotics were widely distributed in the surface water. There were significant differences between the different types of antibiotics, and the highest mean concentration was that of the sulfonamide category (33.74 ng/L), accounting for 36% of the total antibiotic concentration. Spatially, all antibiotics were mainly detected in the middle and downstream areas. The ecological risk assessment results showed that the significant risk rate of antibiotics accounted for 70% and was mainly distributed in the downstream area; however, the risks differed between the 5 categories. Quinolone antibiotics exhibited the highest significant risk rate, reaching 100%. The ecological risk associated with sulfamethoxazole was the highest among all detected antibiotics. The following five main factors influenced the antibiotic concentrations: aquaculture, pharmaceutical wastewater, livestock discharges, domestic sewage, and sewage treatment plants. Among these, pharmaceutical wastewater sources contributed the most (35%) to the total antibiotic concentration, and were distributed throughout the river. Although livestock discharges were not the main reason for the high level of ecological risk, these discharges were highest at certain sites in the midstream region. Different pollution sources posed different levels of ecological risk to the Fenhe River basin, the highest of which was pharmaceutical wastewater with a significant risk rate of 58%.
Collapse
Affiliation(s)
- Linfang Wang
- School of Environment and Resources, Shanxi University, Taiyuan, 030006, China; Sorghum Research Institute, Shanxi Agricultural University/Shanxi Academy of Agricultural Sciences, No. 238, Yunhua West Street, Jinzhong Shanxi, 030603, China
| | - Yifan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Hua Li
- School of Environment and Resources, Shanxi University, Taiyuan, 030006, China.
| | - Yuen Zhu
- School of Environment and Resources, Shanxi University, Taiyuan, 030006, China
| | - Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
7
|
Taladriz-Blanco P, Spuch-Calvar M, Del Prado A, Weder C, Rother-Rutishauser B, Petri-Fink A, Rodriguez-Lorenzo L. Impurities in polyvinylpyrrolidone: the key factor in the synthesis of gold nanostars. NANOSCALE ADVANCES 2022; 4:387-392. [PMID: 35178499 PMCID: PMC8765127 DOI: 10.1039/d1na00711d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/26/2021] [Indexed: 05/11/2023]
Abstract
Control over the synthesis of anisotropic nanoparticles is crucial as slight differences in their size, shape, sharpness, or the number of tips in the case of gold nanostars, has an inordinate influence on their properties and functionality for future applications. Herein, we show that the supplier and purity of polyvinylpyrrolidone (PVP) can significantly alter the synthesis of gold nanostars, demonstrating that impurities, not PVP itself, are the main factor responsible for star-like shape formation. We demonstrate that in the presence of pure PVP and N,N-dimethylformamide, the use of hydrazine leads to the formation of branched nanoparticles. This synthetic approach opens the door to solving issues associated with the use of commercial PVP during the synthesis of gold nanostars.
Collapse
Affiliation(s)
- Patricia Taladriz-Blanco
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 Fribourg CH-1700 Switzerland
- International Iberian Nanotechnology Laboratory (INL), Water Quality group Av. Mestre José Veiga s/n 4715-330 Braga Portugal
| | - Miguel Spuch-Calvar
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 Fribourg CH-1700 Switzerland
| | - Anselmo Del Prado
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 Fribourg CH-1700 Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 Fribourg CH-1700 Switzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 Fribourg CH-1700 Switzerland
- Chemistry Department, University of Fribourg Chemin du Musée 9 Fribourg CH-1700 Switzerland
| | - Laura Rodriguez-Lorenzo
- International Iberian Nanotechnology Laboratory (INL), Water Quality group Av. Mestre José Veiga s/n 4715-330 Braga Portugal
| |
Collapse
|
8
|
Liang JF, Peng C, Li P, Ye QX, Wang Y, Yi YT, Yao ZS, Chen GY, Zhang BB, Lin JJ, Luo Q, Chen X. A Review of Detection of Antibiotic Residues in Food by Surface-Enhanced Raman Spectroscopy. Bioinorg Chem Appl 2021; 2021:8180154. [PMID: 34777490 PMCID: PMC8589529 DOI: 10.1155/2021/8180154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Antibiotics, as veterinary drugs, have made extremely important contributions to disease prevention and treatment in the animal breeding industry. However, the accumulation of antibiotics in animal food due to their overuse during animal feeding is a frequent occurrence, which in turn would cause serious harm to public health when they are consumed by humans. Antibiotic residues in food have become one of the central issues in global food safety. As a safety measure, rapid and effective analytical approaches for detecting these residues must be implemented to prevent contaminated products from reaching the consumers. Traditional analytical methods, such as liquid chromatography, liquid chromatography mass spectrometry, and capillary electrophoresis, involve time-consuming sample preparation and complicated operation and require expensive instrumentation. By comparison, surface-enhanced Raman spectroscopy (SERS) has excellent sensitivity and remarkably enhanced target recognition. Thus, SERS has become a promising alternative analytical method for detecting antibiotic residues, as it can provide an ultrasensitive fingerprint spectrum for the rapid and noninvasive detection of trace analytes. In this study, we comprehensively review the recent progress and advances that have been achieved in the use of SERS in antibiotic residue detection. We introduce and discuss the basic principles of SERS. We then present the prospects and challenges in the use of SERS in the detection of antibiotics in food. Finally, we summarize and discuss the current problems and future trends in the detection of antibiotics in food.
Collapse
Affiliation(s)
- Jun-Fa Liang
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Cheng Peng
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Peiyu Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qiu-Xiong Ye
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Yu Wang
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Yun-Ting Yi
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Zi-Sheng Yao
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Gui-Yun Chen
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Bin-Bin Zhang
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Jia-Jian Lin
- Guangzhou Institute of Food Inspection, Guangzhou, China
| | - Qizhi Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuncai Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Wang Y, Chen H, Jiang L. A highly reproducible SERS sensor based on an Au nanoparticles/graphene oxide hybrid nanocomposite for label-free quantitative detection of antibiotics. Analyst 2021; 146:5740-5746. [PMID: 34515704 DOI: 10.1039/d1an01185e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ampicillin and nitrofurantoin, as broad-spectrum antibiotics, are widely used in the prevention of animal diseases and to ensure livestock growth. Large amounts of antibiotic residues exist in animal-derived foods, affecting food quality and safety, causing adverse side effects, such as allergic and toxic reactions, and increasing bacterial resistance. A sensitive surface enhanced Raman scattering (SERS) sensor is provided to detect low-concentration antibiotics (ampicillin and nitrofurantoin). The sensor is based on an Au nanoparticles/graphene oxide hybrid nanocomposite prepared by an in situ reduction method. The detection limits of ampicillin and nitrofurantoin are as low as 0.01 ng mL-1 and 5 ng mL-1, respectively. The relative spectral intensity of the nitrofurantoin characteristic peak has a good linear relationship with the concentration of nitrofurantoin in the range of 500 ng mL-1 and 5 ng mL-1 (R2 = 0.99235). The structure also allows multi-sample measurement for a variety of antibiotics at the same time. The SERS sensor is easy to prepare, with high uniformity and reproducibility, and the sample does not require complex pretreatment and preparation. Sensitive and quantitative detection of antibiotics by the SERS sensor is of great interest in the fields of health care, food preparation, and environmental sampling.
Collapse
Affiliation(s)
- Yan Wang
- School of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Huacai Chen
- School of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Li Jiang
- School of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
10
|
Zhou C, Zou H, Sun C, Li Y. Recent advances in biosensors for antibiotic detection: Selectivity and signal amplification with nanomaterials. Food Chem 2021; 361:130109. [PMID: 34029899 DOI: 10.1016/j.foodchem.2021.130109] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022]
Abstract
Antibiotics are widely used in the prevention and treatment of infectious diseases in animals due to its bactericidal or bacteriostatic action. Residual antibiotics and their metabolites pose great threats to human and animal health, such as potential carcinogenic and mutagenic effects, and bacterial resistances. Therefore, it is necessary and urgent to accurately monitor trace amounts of antibiotics in food samples. Up to now, many analytical methods have been reported for the determination of antibiotics. Biosensors with the advantages of high sensitivity, rapid response, easy miniaturization, and low price have been widely applied to the detection of antibiotics residues in past decades. This review offered an in-depth evaluation of recognition elements for antibiotic residues in diverse food matrices. In addition, it presented a systematical and critical review on signal amplification via various materials, focusing on recently developed nanomaterials. Finally, the review provided an outlook on the future concepts to help upgrade the sensing techniques for antibiotics in food.
Collapse
Affiliation(s)
- Chen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Haimin Zou
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Chengjun Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China.
| |
Collapse
|
11
|
Serebrennikova KV, Hendrickson OD, Zvereva EA, Popravko DS, Zherdev AV, Xu C, Dzantiev BB. A Comparative Study of Approaches to Improve the Sensitivity of Lateral Flow Immunoassay of the Antibiotic Lincomycin. BIOSENSORS 2020; 10:E198. [PMID: 33287157 PMCID: PMC7761767 DOI: 10.3390/bios10120198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
This study provides a comparative assessment of the various nanodispersed markers and related detection techniques used in the immunochromatographic detection of an antibiotic lincomycin (LIN). Improving the sensitivity of the competitive lateral flow immunoassay is important, given the increasing demands for the monitoring of chemical contaminants in food. Gold nanoparticles (AuNPs) and CdSe/ZnS quantum dots (QDs) were used for the development and comparison of three approaches for the lateral flow immunoassay (LFIA) of LIN, namely, colorimetric, fluorescence, and surface-enhanced Raman spectroscopy (SERS)-based LFIAs. It was demonstrated that, for colorimetric and fluorescence analysis, the detection limits were comparable at 0.4 and 0.2 ng/mL, respectively. A SERS-based method allowed achieving the gain of five orders of magnitude in the assay sensitivity (1.4 fg/mL) compared to conventional LFIAs. Therefore, an integration of a SERS reporter into the LFIA is a promising tool for extremely sensitive quantitative detection of target analytes. However, implementation of this time-consuming technique requires expensive equipment and skilled personnel. In contrast, conventional AuNP- and QD-based LFIAs can provide simple, rapid, and inexpensive point-of-care testing for practical use.
Collapse
Affiliation(s)
- Kseniya V. Serebrennikova
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| | - Olga D. Hendrickson
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| | - Elena A. Zvereva
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| | - Demid S. Popravko
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| | - Anatoly V. Zherdev
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| | - Chuanlai Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Boris B. Dzantiev
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| |
Collapse
|
12
|
|
13
|
Garzón V, Bustos RH, G. Pinacho D. Personalized Medicine for Antibiotics: The Role of Nanobiosensors in Therapeutic Drug Monitoring. J Pers Med 2020; 10:E147. [PMID: 32993004 PMCID: PMC7712907 DOI: 10.3390/jpm10040147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Due to the high bacterial resistance to antibiotics (AB), it has become necessary to adjust the dose aimed at personalized medicine by means of therapeutic drug monitoring (TDM). TDM is a fundamental tool for measuring the concentration of drugs that have a limited or highly toxic dose in different body fluids, such as blood, plasma, serum, and urine, among others. Using different techniques that allow for the pharmacokinetic (PK) and pharmacodynamic (PD) analysis of the drug, TDM can reduce the risks inherent in treatment. Among these techniques, nanotechnology focused on biosensors, which are relevant due to their versatility, sensitivity, specificity, and low cost. They provide results in real time, using an element for biological recognition coupled to a signal transducer. This review describes recent advances in the quantification of AB using biosensors with a focus on TDM as a fundamental aspect of personalized medicine.
Collapse
Affiliation(s)
- Vivian Garzón
- PhD Biosciences Program, Universidad de La Sabana, Chía 140013, Colombia;
| | - Rosa-Helena Bustos
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| | - Daniel G. Pinacho
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| |
Collapse
|