1
|
Xiong P, Cheng W, Chen X, Niu H. Research progress of hydrogen sulfide fluorescent probes targeting organelles. Talanta 2025; 281:126869. [PMID: 39270604 DOI: 10.1016/j.talanta.2024.126869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Hydrogen sulfide (H2S) is implicated in numerous physiological and pathological processes in living organisms. Abnormal levels of H2S can result in various physiological disorders, highlighting the crucial need for effective identification and detection of H2S at the organellar level. Although numerous H2S fluorescent probes targeting organelles have been reported, a comprehensive review of these probes is required. This review focuses on the strategic selection of organelle-targeting groups and recognition sites for H2S fluorescent probes. This review examines H2S fluorescent probes that can specifically target lysosomes, mitochondria, endoplasmic reticulum, Golgi apparatus, and lipid droplets. These fluorescent probes have been meticulously classified and summarized based on their distinct targets, emphasizing their chemical structure, reaction mechanisms, and biological applications. We carefully designed fluorescent probes to efficiently enhance their ability to recognize target substances and exhibit significant fluorescence variations. Furthermore, we discuss the challenges inherent in the development of fluorescent probes and outline potential future directions for this exciting field.
Collapse
Affiliation(s)
- Pingping Xiong
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang, 471000, PR China
| | - Weiwei Cheng
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang, 471000, PR China
| | - Xiujin Chen
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang, 471000, PR China.
| | - Huawei Niu
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang, 471000, PR China.
| |
Collapse
|
2
|
Yamazaki H, Sugawara R, Takayama Y. Development of label-free light-controlled gene expression technologies using mid-IR and terahertz light. Front Bioeng Biotechnol 2024; 12:1324757. [PMID: 39465004 PMCID: PMC11502365 DOI: 10.3389/fbioe.2024.1324757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Gene expression is a fundamental process that regulates diverse biological activities across all life stages. Given its vital role, there is an urgent need to develop innovative methodologies to effectively control gene expression. Light-controlled gene expression is considered a favorable approach because of its ability to provide precise spatiotemporal control. However, current light-controlled technologies rely on photosensitive molecular tags, making their practical use challenging. In this study, we review current technologies for light-controlled gene expression and propose the development of label-free light-controlled technologies using mid-infrared (mid-IR) and terahertz light.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, Nagaoka, Japan
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Ryusei Sugawara
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yurito Takayama
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
3
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
4
|
Cheng Y, Qu Z, Jiang Q, Xu T, Zheng H, Ye P, He M, Tong Y, Ma Y, Bao A. Functional Materials for Subcellular Targeting Strategies in Cancer Therapy: Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305095. [PMID: 37665594 DOI: 10.1002/adma.202305095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Indexed: 09/05/2023]
Abstract
Neoadjuvant and adjuvant therapies have made significant progress in cancer treatment. However, tumor adjuvant therapy still faces challenges due to the intrinsic heterogeneity of cancer, genomic instability, and the formation of an immunosuppressive tumor microenvironment. Functional materials possess unique biological properties such as long circulation times, tumor-specific targeting, and immunomodulation. The combination of functional materials with natural substances and nanotechnology has led to the development of smart biomaterials with multiple functions, high biocompatibilities, and negligible immunogenicities, which can be used for precise cancer treatment. Recently, subcellular structure-targeting functional materials have received particular attention in various biomedical applications including the diagnosis, sensing, and imaging of tumors and drug delivery. Subcellular organelle-targeting materials can precisely accumulate therapeutic agents in organelles, considerably reduce the threshold dosages of therapeutic agents, and minimize drug-related side effects. This review provides a systematic and comprehensive overview of the research progress in subcellular organelle-targeted cancer therapy based on functional nanomaterials. Moreover, it explains the challenges and prospects of subcellular organelle-targeting functional materials in precision oncology. The review will serve as an excellent cutting-edge guide for researchers in the field of subcellular organelle-targeted cancer therapy.
Collapse
Affiliation(s)
- Yanxiang Cheng
- Department of Gynecology, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Zhen Qu
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Qian Jiang
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Tingting Xu
- Department of Clinical Laboratory, Wuhan Blood Center (WHBC), No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Hongyun Zheng
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Mingdi He
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Yan Ma
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Anyu Bao
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| |
Collapse
|
5
|
Zhang W, Xun Q, Xing W, Xu F, Liu X. A Highly Selective Fluorescent Probe for Imaging Hydrogen Sulfide in Living HeLa Cells. J Fluoresc 2023; 33:1603-1608. [PMID: 36795301 DOI: 10.1007/s10895-023-03179-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
As an important endogenous gasotransmitter, hydrogen sulfide (H2S) has been implicated with a variety of biological processes and has attracted more and more attention for its key role in a wide range of pathological processes. However, lacking tools for H2S-specific in situ detection, the changes of endogenous H2S levels in the pathological progression of diseases are still unclear. In this work, a turn-on fluorescent probe (BF2-DBS) has been designed and synthesized by two-step reactions using 4-diethylaminosalicylaldehyde and 1,4-dimethylpyridinium iodide as raw materials. Probe BF2-DBS displays high selectivity and sensitivity to H2S with a large Stokes shift and good anti-interference ability. The practical application of probe BF2-DBS to detect endogenous H2S was evaluated in living HeLa cells.
Collapse
Affiliation(s)
- Wenshen Zhang
- Shandong Institute of nonmetallic materials, No.3 Tianjiazhuang East Road, 250031, Jinan City, Shandong Province, P. R. China.
| | - Qining Xun
- Shandong Institute of nonmetallic materials, No.3 Tianjiazhuang East Road, 250031, Jinan City, Shandong Province, P. R. China
| | - Wenfang Xing
- Shandong Institute of nonmetallic materials, No.3 Tianjiazhuang East Road, 250031, Jinan City, Shandong Province, P. R. China
| | - Feng Xu
- Shandong Institute of nonmetallic materials, No.3 Tianjiazhuang East Road, 250031, Jinan City, Shandong Province, P. R. China
| | - Xia Liu
- Shandong Institute of nonmetallic materials, No.3 Tianjiazhuang East Road, 250031, Jinan City, Shandong Province, P. R. China
| |
Collapse
|
6
|
Goshisht MK, Tripathi N, Patra GK, Chaskar M. Organelle-targeting ratiometric fluorescent probes: design principles, detection mechanisms, bio-applications, and challenges. Chem Sci 2023; 14:5842-5871. [PMID: 37293660 PMCID: PMC10246671 DOI: 10.1039/d3sc01036h] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Biological species, including reactive oxygen species (ROS), reactive sulfur species (RSS), reactive nitrogen species (RNS), F-, Pd2+, Cu2+, Hg2+, and others, are crucial for the healthy functioning of cells in living organisms. However, their aberrant concentration can result in various serious diseases. Therefore, it is essential to monitor biological species in cellular organelles such as the cell membrane, mitochondria, lysosome, endoplasmic reticulum, Golgi apparatus, and nucleus. Among various fluorescent probes for species detection within the organelles, ratiometric fluorescent probes have drawn special attention as a potential way to get beyond the drawbacks of intensity-based probes. This method depends on measuring the intensity change of two emission bands (caused by an analyte), which produces an efficient internal referencing that increases the detection's sensitivity. This review article discusses the literature publications (from 2015 to 2022) on organelle-targeting ratiometric fluorescent probes, the general strategies, the detecting mechanisms, the broad scope, and the challenges currently faced by fluorescent probes.
Collapse
Affiliation(s)
- Manoj Kumar Goshisht
- Department of Chemistry, Natural and Applied Sciences, University of Wisconsin-Green Bay 2420 Nicolet Drive Green Bay WI 54311-7001 USA
- Department of Chemistry, Government Naveen College Tokapal Bastar Chhattisgarh 494442 India
| | - Neetu Tripathi
- Department of Chemistry, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Goutam Kumar Patra
- Department of Chemistry, Faculty of Physical Sciences Guru Ghasidas Vishwavidyalaya Bilaspur Chhattisgarh 495009 India
| | - Manohar Chaskar
- Department of Technology, Savitribai Phule Pune University Ganeshkhind Pune 411007 India
| |
Collapse
|
7
|
Meng Y, Liu Y, Guo Q, Xu H, Jiao Y, Yang Z, Shuang S, Dong C. Strategy to synthesize dual-emission carbon dots and their application for pH variation and hydrogen sulfide sensing and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122483. [PMID: 36812757 DOI: 10.1016/j.saa.2023.122483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
In this work, dual emission nitrogen and sulfur co-doped fluorescent carbon dots (DE-CDs) were designed for pH variation and hydrogen sulfide (H2S) sensing and bioimaging through fluorescence enhancement. The DE-CDs with green-orange emission were facilely prepared by one-pot hydrothermal strategy using neutral red and sodium 1,4-dinitrobenzene sulfonate as precursors, manifesting intriguing dual-emission behavior at 502 and 562 nm. As the pH increases from 2.0 to 10.2, the fluorescence of DE-CDs gradually increases. The linear ranges are 2.0-3.0 and 5.4-9.6, respectively, which are attributed to the abundant amino groups on the surface of the DE-CDs. Meanwhile, H2S can be employed as an enhancer to increase the fluorescence of DE-CDs. The linear range is 25-500 μM, and the LOD is calculated to be 9.7 μM. Besides, the DE-CDs can be used as imaging agents for pH variation and H2S sensing in living cells and zebrafish due to their low toxicity and good biocompatibility. All of the results demonstrated that the DE-CDs can monitor pH fluctuations and H2S in aqueous and biological environments, and have promising applications in the fields of fluorescence sensing, disease detection, and bioimaging.
Collapse
Affiliation(s)
- Yating Meng
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yang Liu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Qiaozhi Guo
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Hongmei Xu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuan Jiao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Zhenhua Yang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
8
|
Shi GJ, Wang YD, Yu ZX, Zhang Q, Chen S, Xu LZ, Wang KP, Hu ZQ. The coumarin-pyrazole dye for detection of hydrogen sulfide in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121898. [PMID: 36150259 DOI: 10.1016/j.saa.2022.121898] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Fluorescent probes for H2S are often interfered by other thiols. In this work, a coumarin-pyrazole dye with 2,4-dinitrosulfonyl group was designed for the detection of H2S. The probe exhibits weak fluorescence in water due to the photo induced electron transfer (PET) by 2,4-dinitrosulfonyl. After the sulfonyl group is cleaved off by H2S, strong fluorescence appears. The probe can specifically detect H2S without being interfered by other biological thiols, and shows a wide applicable pH range, low detection and wide detection range. The excellent detection properties of the probe can also be used to detect endogenous and exogenous H2S in cells. In addition, the probes can be made into portable test paper for the detection of H2S in solutions and can detect H2S in different water samples.
Collapse
Affiliation(s)
- Guang-Jin Shi
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yue-Dong Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhen-Xing Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qi Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaojin Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liang-Zhong Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
9
|
Chen X, Cai W, Liu G, Tu Y, Fan C, Pu S. A highly selective colorimetric and fluorescent probe Eu(tdl) 2abp for H 2S sensing: Application in live cell imaging and natural water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121657. [PMID: 35917617 DOI: 10.1016/j.saa.2022.121657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Using 4-([2,2': 6', 2'- terpyridin] -4'-yl) -N, N-dimethylaniline (tdl) as auxiliary ligand and 6-azido-2,2'-bipyridine (abp) as recognition ligand, a europium complex fluorescent probe Eu(4-([2,2': 6', 2'-terpyridin] -4' -yl) -N, N-dimethylaniline)2-6-azido-2,2'-bipyridine Eu(tdl)2abp for efficient and specific recognition of hydrogen sulfide (H2S) was successfully synthesized and characterized by NMR and MS. Eu(tdl)2abp represented "on-off" fluorescence signals for H2S and its color changes could be identified with naked eyes. Eu(tdl)2abp had short response time (2 min) to H2S, high selectivity and good anti-interference, large stokes shift (207 nm). In various samples, when H2S existed, the azide group was reduced to amine group, resulting in closed fluorescence signal, and the fluorescence intensity reached the degree of quenching without being affected by other interference. At the same time, there was a good linear relationship between relative fluorescence intensity and H2S concentration with the detection limit (LOD) of 0.64 μM. The sensing mechanism of Eu(tdl)2abp to detect H2S was characterized by 1H NMR and HR-MS. Eu(tdl)2abp was used with success for the sensitive detection of H2S in natural water and living cells.
Collapse
Affiliation(s)
- Xiaoxia Chen
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330031, PR China
| | - Wenjuan Cai
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330031, PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330031, PR China
| | - Yayi Tu
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330031, PR China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330031, PR China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330031, PR China; Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, PR China.
| |
Collapse
|
10
|
Shi J, Zhang D, Li M, Wang Y, Liu L, Wang T, Guo F, Wu X. A new fluorescent probe for hydrogen sulfide based on naphthalimide derivatives and its biological application. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Shi Y, Luo Z, You J. Subcellular delivery of lipid nanoparticles to endoplasmic reticulum and mitochondria. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1803. [PMID: 35441489 DOI: 10.1002/wnan.1803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Primarily responsible for the biogenesis and metabolism of biomolecules, endoplasmic reticulum (ER) and mitochondria are gradually becoming the targets of therapeutic modulation, whose physiological activities and pathological manifestations determine the functional capacity and even the survival of cells. Drug delivery systems with specific physicochemical properties (passive targeting), or modified by small molecular compounds, polypeptides, and biomembranes demonstrating tropism for ER and mitochondria (active targeting) are able to reduce the nonselective accumulation of drugs, enhancing efficacy while reducing side effects. Lipid nanoparticles feature high biocompatibility, diverse cargo loading, and flexible structure modification, which are frequently used for subcellular organelle-targeted delivery of therapeutics. However, there is still a lack of systematic understanding of lipid nanoparticle-based ER and mitochondria targeting. Herein, we review the pathological significance of drug selectively delivered to the ER and mitochondria. We also summarize the molecular basis and application prospects of lipid nanoparticle-based ER and mitochondria targeting strategies, which may provide guidance for the prevention and treatment of associated diseases and disorders. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Tong X, Hao L, Song X, Wu S, Zhang N, Li Z, Chen S, Hou P. A fast-responsive fluorescent probe based on a styrylcoumarin dye for visualizing hydrogen sulfide in living MCF-7 cells and zebrafish. RSC Adv 2022; 12:17846-17852. [PMID: 35765346 PMCID: PMC9201871 DOI: 10.1039/d2ra00997h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/02/2022] [Indexed: 12/22/2022] Open
Abstract
As a vital antioxidant molecule, H2S can make an important contribution to regulating blood vessels and inhibiting apoptosis when present at an appropriate concentration. Higher levels of H2S can interfere with the physiological responses of the respiratory system and central nervous system carried out by mammalian cells. This is associated with many illnesses, such as diabetes, mental decline, cardiovascular diseases, and cancer. Therefore, the accurate measurement of H2S in organisms and the environment is of great significance for in-depth studies of the pathogenesis of related diseases. In this contribution, a new coumarin-carbazole-based fluorescent probe, COZ-DNBS, showing a rapid response and large Stokes shift was rationally devised and applied to effectively sense H2S in vivo and in vitro. Upon using the probe COZ-DNBS, the established fluorescent platform could detect H2S with excellent selectivity, showing 62-fold fluorescence enhancement, a fast-response time (<1 min), high sensitivity (38.6 nM), a large Stokes shift (173 nm), and bright-yellow emission. Importantly, the probe COZ-DNBS works well for monitoring levels of H2S in realistic samples, living MCF-7 cells, and zebrafish, showing that COZ-DNBS is a promising signaling tool for H2S detection in biosystems. The probe COZ-DNBS displayed excellent selectivity, a fast response, high sensitivity, a large Stokes shift, and bright-yellow emission in response to H2S.![]()
Collapse
Affiliation(s)
- Xu Tong
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar 161006 China
| | - Liguo Hao
- College of Medical Technology, Qiqihar Medical University Qiqihar 161006 China
| | - Xue Song
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar 161006 China
| | - Shuang Wu
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar 161006 China
| | - Na Zhang
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar 161006 China
| | - Zhongtao Li
- College of Medical Technology, Qiqihar Medical University Qiqihar 161006 China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University Qiqihar 161006 China
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University Qiqihar 161006 China
| |
Collapse
|
13
|
Wang WX, Wang ZQ, Tan ZK, Mao GJ, Chen DH, Li CY. A nitrobenzoxadiazole-based near-infrared fluorescent probe for the specific imaging of H 2S in inflammatory and tumor mice. Analyst 2022; 147:2712-2717. [PMID: 35635158 DOI: 10.1039/d2an00623e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
As a common gaseous signaling molecule, hydrogen sulfide (H2S) plays a vital role in physiology and pathology. The development of fluorescent probes for detecting H2S has attracted widespread attention. However, most of the reported fluorescent probes with nitrobenzoxadiazole (NBD) as the recognition group have been widely used to simultaneously detect biothiols and H2S, instead of specifically detecting H2S. Herein, a novel NBD-based near-infrared (NIR) fluorescent probe named CX-N for the detection of H2S is synthesized. The selectivity of CX-N for H2S is significantly higher than that for biothiols and other potential interferences. After reacting with H2S, CX-N shows a significant increase in NIR fluorescence (75-fold), large Stokes shift (155 nm) and fast response (4 min). And the possible response mechanism of CX-N to H2S is given and confirmed by HPLC and HRMS. Based on the low cytotoxicity of CX-N, it has been used for H2S imaging in live cells and zebrafish. More importantly, CX-N has also been successfully applied for the real-time imaging of H2S in inflammatory and tumor mice based on its NIR emission, which provides a reliable platform for the specific recognition of H2S in complex biological systems.
Collapse
Affiliation(s)
- Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| | - Zhi-Qing Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| | - Zhi-Ke Tan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Dong-Hua Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
14
|
Yang WY, Anusuyadevi K, Lu PH, Thirumalaivasan N, Hsuan Lin W, Velmathi S, Wu SP. A two photon fluorescent probe for highly selective detection and endogenous imaging of hydrogen sulfide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121043. [PMID: 35189492 DOI: 10.1016/j.saa.2022.121043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/19/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen sulfide (H2S), one of redox-active sulfur species, is known as a signaling molecule and an antioxidant in biological tissues to maintain cellular functions. The development of selective and sensitive H2S detection is important to understand the role of H2S in vivo. Herein, a new two-photon probe NNE was developed to detect hydrogen sulfide using 6-acetyl-N-methyl-2-naphthylamine with an attachment of 7-nitrobenzo-oxadiazole. The probe NNE exhibits high selectivity towards hydrogen sulfide over other anions. Nucleophilic substitution of H2S leads to a turn-on response with 28-fold enhancement in quantum yield (from 0.004 to 0.117). NNE shows a high sensitivity towards hydrogen sulfide with an extremely low detection limit at 6.8 nM. Furthermore, the probe NNE exhibits two-photon excited fluorescence, making it a suitable probe for monitoring H2S distribution in live cells and tissues without background fluorescence interference.
Collapse
Affiliation(s)
- Wan-Yu Yang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kathiresan Anusuyadevi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Ping-Hsuan Lu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Natesan Thirumalaivasan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Wen- Hsuan Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India.
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
15
|
Li Y, Chen Q, Pan X, Lu W, Zhang J. Development and Challenge of Fluorescent Probes for Bioimaging Applications: From Visualization to Diagnosis. Top Curr Chem (Cham) 2022; 380:22. [PMID: 35412098 DOI: 10.1007/s41061-022-00376-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/15/2022] [Indexed: 11/24/2022]
Abstract
Fluorescent probes have been used widely in bioimaging, including biological substance detection, cell imaging, in vivo biochemical reaction process tracking, and disease biomarker monitoring, and have gradually occupied an indispensable position. Compared with traditional biological imaging technologies, such as positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI), the attractive advantages of fluorescent probes, such as real-time imaging, in-depth visualization, and less damage to biological samples, have made them increasingly popular. Among them, ultraviolet-visible (UV-vis) fluorescent probes still occupy the mainstream in the field of fluorescent probes due to the advantages of available structure, simple synthesis, strong versatility, and wide application. In recent years, fluorescent probes have become an indispensable tool for bioimaging and have greatly promoted the development of diagnostics. In this review, we focus on the structure, design strategies, advantages, representative probes and latest discoveries in application fields of UV-visible fluorescent probes developed in the past 3-5 years based on several fluorophores. We look forward to future development trends of fluorescent probes from the perspective of bioimaging and diagnostics. This comprehensive review may facilitate the development of more powerful fluorescent sensors for broad and exciting applications in the future.
Collapse
Affiliation(s)
- Yanchen Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qinhua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wen Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
16
|
Tang F, Wu C, Zhai Z, Wang K, Liu X, Xiao H, Zhuo S, Li P, Tang B. Recent progress in small-molecule fluorescent probes for endoplasmic reticulum imaging in biological systems. Analyst 2022; 147:987-1005. [PMID: 35230358 DOI: 10.1039/d1an02290c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endoplasmic reticulum (ER) is an indispensable organelle in eukaryotic cells involved in protein synthesis and processing, as well as calcium storage and release. Therefore, maintaining the quality of ER is of great importance for cellular homeostasis. Aberrant fluctuations of bioactive species in the ER will result in homeostasis disequilibrium and further cause ER stress, which has evolved to contribute to the pathogenesis of various diseases. Therefore, the real-time monitoring of various bioactive species in the ER is of high priority to ascertain the mysterious roles of ER, which will contribute to unveiling the corresponding mechanism of organism disturbances. Recently, fluorescence imaging has emerged as a robust technique for the direct visualization of molecular events due to its outstanding sensitivity, high temporal-spatial resolution and noninvasive nature. In this review, we comprehensively summarize the recent progress in design strategies, bioimaging applications, potential directions and challenges of ER-targetable small-molecular fluorescent probes.
Collapse
Affiliation(s)
- Fuyan Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China. .,College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Chuanchen Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Zhaodong Zhai
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Kai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Xueli Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China. .,College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Shuping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
17
|
Li M, Jiao Y, Duan C. A dual-emission fluorescence-enhanced probe for hydrogen sulfide and its application in biological imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj01195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescence-enhanced probe with unique dual-channel emissions was designed for the detection and bioimaging of hydrogen sulfide.
Collapse
Affiliation(s)
- Minghao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yang Jiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
18
|
Progress on the reaction-based methods for detection of endogenous hydrogen sulfide. Anal Bioanal Chem 2021; 414:2809-2839. [PMID: 34825272 DOI: 10.1007/s00216-021-03777-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022]
Abstract
Hydrogen sulfide (H2S) is a biologically signaling molecule that mediates a wide range of physiological functions, which is frequently misregulated in numerous pathological processes. As such, measurement of H2S holds great attention due to its unique physiological and pathophysiological roles. Currently, a variety of methods based on the H2S-involved reactions have been reported for detection of endogenous H2S, bearing the advantages of good specificity and high sensitivity. This review describes in detail the types of reactions, their mechanisms, and their applications in biological research, thus hopefully providing some guidelines to the researchers in this field for further investigation.
Collapse
|
19
|
Ma Q, Xiao H, Wang K, Liu X, Liu Y. Determination of Hydrogen Sulfide in Endoplasmic Reticulum by Two-Photon Fluorescence. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1884255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Qingqing Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, China
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Kai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, China
| | - Xueli Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, China
| | - Yuying Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, China
| |
Collapse
|
20
|
Deng P, Xiao F, Wang Z, Jin G. A Novel BODIPY Quaternary Ammonium Salt-Based Fluorescent Probe: Synthesis, Physical Properties, and Live-Cell Imaging. Front Chem 2021; 9:650006. [PMID: 33777904 PMCID: PMC7994363 DOI: 10.3389/fchem.2021.650006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
The development of biological fluorescent probes is of great significance to the field of cancer bio-imaging. However, most current probes within the bulky hydrophobic group have limited application in aqueous medium and restricted imaging under physiological conditions. Herein, we proposed two efficient molecules to study their physical properties and imaging work, and the absorption and fluorescence intensity were collected with varying ions attending in aqueous medium. We enhance the water solubility through the quaternization reaction and form a balance between hydrophilic and hydrophobicity with dipyrrome-theneboron difluoride (BODIPY) fluorophore. We introduced pyridine and dimethylaminopyridine (DMAP) by quaternization and connected the BODIPY fluorophore by ethylenediamine. The final synthesized probes have achieved ideal affinity with HeLa cells (human cervical carcinoma cell line) in live-cell imaging which could be observed by Confocal Microscope. The probes also have a good affinity with subcutaneous tumor cells in mice in in vivo imaging, which may make them candidates as oncology imaging probes.
Collapse
Affiliation(s)
- Peng Deng
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, China
| | - Fuyan Xiao
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhou Wang
- College of Vanadium and Titanium, Panzhihua University, Panzhihua, China
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
21
|
Zhou L, Li Y, Zhou A, Zhang G, Cheng ZQ, Ge YX, Liu SK, Azevedo RB, Zhang J, Jiang S, Jiang CS. A New Endoplasmic Reticulum (ER)-Targeting Fluorescent Probe for the Imaging of Cysteine in Living Cells. J Fluoresc 2020; 30:1357-1364. [PMID: 32870455 DOI: 10.1007/s10895-020-02615-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022]
Abstract
Cysteine (Cys) is an important endogenous amino acid and plays critical physiological roles in living systems. Herein, an endoplasmic reticulum (ER)-targeting fluorescent probe (FER-Cys) was designed and prepared for imaging of Cys in living cells. The probe FER-Cys consists of a fluorescein framework as the fluorescent platform, acrylate group as the response site for the selective recognition of Cys, and ER-specific p-toluenesulfonamide fragment. After the response of probe FER-Cys to Cys, a turn-on fluorescence signal at 546 nm could be detected obviously. The probe FER-Cys further shows desirable selectivity to Cys. Finally, the probe FER-Cys was proven to selectively detect Cys in live cells and successfully image the changes of Cys level in the cell models of H2O2-induced redox imbalance.
Collapse
Affiliation(s)
- Lei Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Yunxia Li
- Laiyu Chemical Co., Itd, Laizhou, China
| | - Aiqin Zhou
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | | | - Zhi-Qiang Cheng
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Yong-Xi Ge
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Shan-Kui Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | | | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | | | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
22
|
Ma Q, Wang C, Mao G, Tian M, Sun J, Feng S. An endoplasmic reticulum-targeting and ratiometric fluorescent probe for hypochlorous acid in living cells based on a 1,8-naphthalimide derivative. NEW J CHEM 2020. [DOI: 10.1039/d0nj04045b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel reticulum-targeting and ratiometric fluorescent probe for determining hypochlorous acid has been developed.
Collapse
Affiliation(s)
- Qiujuan Ma
- Henan Research Center for Special Processing Technology of Traditional Chinese Medicine
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Chunyan Wang
- Henan Research Center for Special Processing Technology of Traditional Chinese Medicine
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
| | - Meiju Tian
- Henan Research Center for Special Processing Technology of Traditional Chinese Medicine
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Jingguo Sun
- Henan Research Center for Special Processing Technology of Traditional Chinese Medicine
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Suxiang Feng
- Henan Research Center for Special Processing Technology of Traditional Chinese Medicine
- School of Pharmacy
- Henan University of Chinese Medicine
- Zhengzhou 450046
- P. R. China
| |
Collapse
|