1
|
Saini AK, Jangir R, Jali BR, Sahoo SK. A facile synthesis of polyethyleneimine based fluorescent polymeric nanorods using vitamin B 6 cofactor as cross-linker for ratiometric detection of doxorubicin. Mikrochim Acta 2024; 191:774. [PMID: 39611997 DOI: 10.1007/s00604-024-06856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Polyethyleneimine (PEI) based fluorescent polymeric nanorods with high quantum yield (87.21%) were synthesized by crosslinking and self-assembly of PEI by vitamin B6 cofactor pyridoxal 5'-phosphate (PLP). The fluorescent PEIPLP polymeric nanorods were employed for the ratiometric detection of doxorubicin (DOX). With the addition of DOX to the PEIPLP nanorods, the fluorescent intensity was decreased at 510 nm and concomitantly enhanced at 590 nm due to the fluorescence resonance energy transfer (FRET) process. The selective and specific ratiometric fluorescence response from the PEIPLP nanorods can be employed to detect DOX down to 10 nM. The practical utility of the PEIPLP nanorods was examined by detecting DOX in human serum.
Collapse
Affiliation(s)
- Anuj K Saini
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| | - Ritambhara Jangir
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India.
| |
Collapse
|
2
|
Kang K, Du X, Shi L, Peng Z, Zhang X, Liu B, Yue G, Wang L, Wang Z, Chen S. Selective detection of ionic liquid fluorescence probes for visual colorimetry of different metal ions. ENVIRONMENTAL RESEARCH 2024; 242:117791. [PMID: 38043897 DOI: 10.1016/j.envres.2023.117791] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
At present, the fast distinction of different metal ions in pure water media is not only a great challenge, but also drives the protection of water quality in environmental water bodies. In this paper, a novel ionic liquid fluorescent probe Glycolic Acid-L-Arginine (GA-L-Arg) was rationally created and designed through an in-depth study of ionic liquids. It is also used as an innovative multi-ion fluorescent probe for colorimetric detection and separate identification of Fe3+ and Co2+ in aqueous solutions of various metal ions. GA-L-Arg has excellent water solubility due to the strong hydrophilicity of Glycolic Acid and L-Arginine. The probe showed high sensitivity, extremely significant selectivity, and great pH stability for Fe3+ and Co2+ in pure water. The GA-L-Arg structure and the mechanism of Fe3+ and Co2+ detection were analyzed by infrared spectroscopic characterization and quantum chemical calculations. More importantly, the distinct colorimetric partitioning of Fe3+ and Co2+ was performed by the unique extraction of Fe3+ in the presence of the fluorescent probe and buffer solution.
Collapse
Affiliation(s)
- Kaiming Kang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, Hebei, 050000, PR China
| | - Xiaohan Du
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, Hebei, 050000, PR China
| | - Lei Shi
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, Hebei, 050000, PR China
| | - Zhixiao Peng
- Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, Hebei, 050000, PR China; School of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050000, PR China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, Hebei, 050000, PR China; School of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050000, PR China
| | - Baoyou Liu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, Hebei, 050000, PR China.
| | - Gang Yue
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050000, PR China; Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd, Yinchuan, Ningxia, 750000, PR China
| | - Limin Wang
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd, Yinchuan, Ningxia, 750000, PR China
| | - Zhiqiang Wang
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd, Yinchuan, Ningxia, 750000, PR China
| | - Shaohua Chen
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd, Yinchuan, Ningxia, 750000, PR China
| |
Collapse
|
3
|
Geng JS, Feng W, Li J, Tang XY, Meng L, Yu JP, Hu KQ, Yuan LH, Mei L, Shi WQ. Modular Assembly of Isostructural Mixed-Ligand Uranyl Coordination Polymers Based on a Patterning Strategy. Inorg Chem 2022; 61:10694-10704. [PMID: 35785788 DOI: 10.1021/acs.inorgchem.2c00853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controlling the orderly assembly of molecular building blocks for the formation of the desired architectural, chemical, and physical properties of the resulting solid-state materials remains a long-term goal and deserves to be examined. In this work, we propose a patterning strategy for modular assembly and structural regulation of mixed-ligand uranyl coordination polymers (CPs) through the combination of couples of organic ligands with complementary molecular geometry and well-matched coordination modes. By using a 5-(p-tolyldiazenyl)isophthalic acid ligand (H2ptdi) with different rigid linear bicarboxylic acid linkers to construct a well-defined ladder-like pattern, five novel isostructural uranyl coordination polymers, [(UO)2(ptdi)(bdc)0.5](dma) (1), [(UO)2(ptdi)(bpdc)0.5](dma) (2), [(UO)2(ptdi)(tpdc)0.5](dma) (3), [(UO)2(ptdi)(ndc)0.5](dma) (4), and [(UO)2(ptdi) (pdc)0.5](dma) (5) {H2bdc, 1,4-dicarboxybenzene; H2bpdc, 4,4'-biphenyldicarboxylic acid; H2tpdc, terphenyl-4,4″-dicarboxylic acid; H2ndc, 2,6-naphthalenedicarboxylic acid; H2pdc, 1,6-pyrenedicarboxylic acid; [dma]+, [(CH3)2NH2]+}, were successfully synthesized. Structural analysis reveals that 1-5 have similar ladder-like units but different sizes of one-dimensional nanochannels and interlayer spacing due to the different lengths and widths of the linkers. Because of the changes in interlayer spacing of these isostructural cationic frameworks, differences in the performance of Eu3+ ion exchange with [dma]+ are observed. Moreover, those compounds with high phase purity have been further characterized by thermogravimetric analysis, infrared spectroscopy, and luminescence spectroscopy, element analysis, PXRD and UV spectroscopy. Among them, compound 3 with strong fluorescence can selectively detect Fe3+ over several competing metal cations in aqueous solution. This work not only provides a feasible patterning method for effectively regulating the modular synthesis of functional coordination polymers but also enriches the library of uranyl-based coordination polymers with intriguing structures and functionality.
Collapse
Affiliation(s)
- Jun-Shan Geng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Feng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jie Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Yi Tang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liao Meng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Hua Yuan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Water-soluble non-conjugated polymer dots with strong green fluorescence for sensitive detection of organophosphate pesticides. Anal Chim Acta 2022; 1206:339792. [DOI: 10.1016/j.aca.2022.339792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
|
5
|
Wang Y, Liu F, Yi Q, Wang M, Wang J. Design, synthesis and biological evaluation of novel dual-targeting fluorescent probes for detection of Fe 3+ in the lysosomes of hepatocytes mediated by galactose-morpholine moieties. Talanta 2022; 243:123362. [PMID: 35276499 DOI: 10.1016/j.talanta.2022.123362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
In this work, novel dual-targeting probes composed of galactose and morpholine were designed and synthesized for monitoring Fe3+ levels in the lysosome of hepatocyte. MP-Gal-1, MP-Gal-2 and MP-Gal-3 showed good selectivity and sensitivities toward Fe3+ with the detection limits of 9.40 × 10-8 M, 7.68 × 10-8 M and 7.10 × 10-8 M, respectively. 1:2 stoichiometry is the most likely recognition mode between probe and Fe3+. Low toxic MP-Gal-1, MP-Gal-2 and MP-Gal-3 exhibited favorable hepatic targeting effect in both cell and tissue levels, which was because the galactose group of probe could be recognized by ASGPR overexpressed on the hepatocytes. The hepatocyte-targeting capacity followed MP-Gal-1 < MP-Gal-2 < MP-Gal-3 trend, which was attributed to the galactose cluster effect. MP-Gal-1, MP-Gal-2 and MP-Gal-3 also displayed good lysosomes-targeting capacities, because the basic morpholine moiety of probes could be easily attracted by the acidic lysosome. Therefore, MP-Gal-1, MP-Gal-2 and MP-Gal-3 have good dual targeting capacities (liver and lysosome) and could be used to detect lysosomal Fe3+ in the liver, which is great significant for precise diagnosis and treatment of liver lysosomal iron-related diseases.
Collapse
Affiliation(s)
- Yan Wang
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Feiyang Liu
- Medical College, Guangxi University, Nanning, 530004, China
| | - Qingyuan Yi
- Medical College, Guangxi University, Nanning, 530004, China
| | - Mian Wang
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Jianyi Wang
- Medical College, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
6
|
Yang H, Qi D, Si X, Yan Z, Guo L, Shao C, Zhang W, Yang L. One novel Cd-MOF as a highly effective multi-functional luminescent sensor for the detection of Fe3+, Hg2+, CrⅥ, Aspartic acid and Glutamic acid in aqueous solution. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Effect of Temperature on Re-entrant Condensation of Globular Protein in Presence of Tri-valent Ions. J Fluoresc 2022; 32:791-797. [DOI: 10.1007/s10895-021-02874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
|
8
|
Chen YY, Fan SC, Chang CC, Wang JC, Chiang HM, Juang TY. Non-Conventional Fluorescence and Cytotoxicity of Two Aliphatic Hyperbranched Polymer Dots Having Poly(amic acid) Structures: Implications for Labeling Nanodrug Carriers. ACS OMEGA 2021; 6:33159-33170. [PMID: 34901667 PMCID: PMC8655931 DOI: 10.1021/acsomega.1c05537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
In this study, we used one-pot A2 + B3 polymerizations to synthesize two aliphatic + alicyclic polymer dots (PDs) having non-conjugated hyperbranched structures, employing two types of dianhydrides as the A2 components, possessing bridged bicyclic alkene (PD-BT) and non-alkene (PD-ET) units, and Jeffamine T403 polyetheramine (T403) as the B3 components. We prepared PD-ET from commercially available ethylenediaminetetraacetic dianhydride (EDTAD, A2) and T403 (B3) and PD-BT from bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA, A2) and T403 (B3). These two types of PDs possessed non-conjugated hyperbranched poly(amic acid) structures with terminal amino functional groups. PD-BT and PD-ET exhibited non-conventional fluorescence with emissions at 435 and 438 nm, respectively, and quantum yields of 12.8 and 14.0%, respectively. The fluorescence intensity of PD-ET was influenced by the pH, but PD-BT was less affected because of its rigid aliphatic bridged bicyclic structure. In aqueous solutions, the sizes of the PD-BT and PD-ET nanoparticles were 3-5 nm, and their net charges can be adjusted by varying the pH. These PDs were non-cytotoxic toward human MCF-7 breast cancer cells and human keratinocyte HaCaT cells at concentrations of 50 μg mL-1 for PD-BT and 500 μg mL-1 for PD-ET. Confocal microscopic bioimaging revealed that the PDs were located within the cells after treatment for 6 h. These PDs were easy to prepare, highly water-soluble, and possessed a large number of peripheral functional groups for further modification. Combined with their non-conventional fluorescence, they appear to have potential uses in bioimaging and as drug-labeling carriers.
Collapse
Affiliation(s)
- Yu-Yu Chen
- Department
of Cosmeceutics, China Medical University, Taichung 40402, Taiwan
| | - Siao-Cian Fan
- Department
of Cosmeceutics, China Medical University, Taichung 40402, Taiwan
| | - Chang-Cheng Chang
- Aesthetic
Medical Center, China Medical University
Hospital, Taichung 40402, Taiwan
- School
of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Jian-Cheng Wang
- Department
of Cosmeceutics, China Medical University, Taichung 40402, Taiwan
| | - Hsiu-Mei Chiang
- Department
of Cosmeceutics, China Medical University, Taichung 40402, Taiwan
| | - Tzong-Yuan Juang
- Department
of Cosmeceutics, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
9
|
Haghighi Shishavan Y, Amjadi M. A new enhanced chemiluminescence reaction based on polymer dots for the determination of metronidazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119992. [PMID: 34082355 DOI: 10.1016/j.saa.2021.119992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Polymer dots (PDs) with non-conjugated functional groups are attracting nanomaterials due to their ease of synthesis, the biocompatibility of precursors, and low toxicity. In this work, PDs with non-conjugated groups were synthesized with a simple and straightforward method by Schiff base reaction. Then their possible application in the chemiluminescence (CL) reactions was explored. Results were shown that PDs increased the CL intensity of the NaIO4-fluorescein system about 15 times. Regarding the CL mechanism, we proved that the emitting species is fluorescein, which can be excited by the energy transfer from the excited-state PDs. It was observed that CL emission is promoted by the interaction of metronidazole (MND) with the PDs. Therefore, we designed a novel and sensitive assay for MND based on its enhancing effect on NaIO4-fluorescein-PDs CL system. The introduced assay showed a linear response in the range of 5.0-300 nM with a detection limit of 1.5 nM. The method was used for the determination of MND in spiked plasma samples.
Collapse
Affiliation(s)
- Yalda Haghighi Shishavan
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.
| |
Collapse
|
10
|
Nanoscale Carbon-Polymer Dots for Theranostics and Biomedical Exploration. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In recent years, new carbonized nanomaterials have emerged in imaging, sensing, and various biomedical applications. Published literature shows that carbon dots (CDs) have been explored more extensively than any other nanomaterials. However, its polymeric version, carbon polymer dots (CPDs), did not get much attention. The non-conjugated and single-particle CPDs have all the merits of polymer and CDs, such as photoluminescent properties. The partially carbonized CPDs can be applied like CDs without surface passivation and functionalization. This merit can be further enhanced through the selection of desired precursors and control of carbonization synthesis. CPDs can absorb UV-visible-NIR light and can enhance the photoresponsive chemical and biochemical interactions. This review aims to introduce this area of renewed interest and provide insights into current developments of CPDs nanoparticles and present an overview of chemical, biological, and therapeutic applications.
Collapse
|
11
|
Chen J, Yu Y, Zhu B, Han J, Liu C, Liu C, Miao L, Fakudze S. Synthesis of biocompatible and highly fluorescent N-doped silicon quantum dots from wheat straw and ionic liquids for heavy metal detection and cell imaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142754. [PMID: 33109369 DOI: 10.1016/j.scitotenv.2020.142754] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 05/28/2023]
Abstract
Silane-based precursors for the synthesis of water-dispersible silicon quantum dots (SiQDs) present harmful effects on both researchers and the environment, due to their high toxicity. Though waste wheat straw is an abundant source of natural silicon, its application towards the synthesis of biocompatible SiQDs for metal detection has not yet been explored. In this study, N-doped SiQDs demonstrating uniform spherical morphologies, excellent water dispersity and strong fluorescence emission with a quantum yield of 28.9% were facilely synthesized by using wheat straw (WS) as silicon source and allyl-3-methylimidazolium chloride (AMIMCl) as nitrogen source. The wheat straw based SiQDs (WS-SiQDs) showed linear fluorescence quenching ((F0-F)/F) with Cr(VI) and Fe(III) concentration in the range of 0-6 × 10-4 M. Following immobilization on hydrophilic silica hydrogels, WS-SiQDs@silica hydrogels demonstrated enhanced fluorescence emission which can selectively detect Cr(VI) and Fe (III) to the limits of 142 and 175 nM, respectively. Moreover, cell imaging results reflected that WS-SiQDs can penetrate the membranes of dental pulp stem cells and react with the nucleuses of the stem cells. The stem cells maintained high viability under the conditions of 24 h incubation and SiQD concentration below 50 mg·L-1, thus indicating low cytotoxicity of WS-SiQDs. The as-prepared SiQDs demonstrated notable structural and fluorescent properties, therefore representing promising biocompatible fluorescent nanomaterials for metal detection and cell imaging.
Collapse
Affiliation(s)
- Jianqiang Chen
- College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China.
| | - Yang Yu
- College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| | - Bijun Zhu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, PR China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| | - Chao Liu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, PR China
| | - Chengguo Liu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, 16 Suojin Wucun, Nanjing 210042, PR China
| | - Leiying Miao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, PR China.
| | - Sandile Fakudze
- College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| |
Collapse
|
12
|
Pablos JL, Catalina F, Ibeas S, Corrales T. Fluorescent imidazolium-based poly(ionic liquid)s for Fe3+ detection in aqueous medium. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|